A117904 Number triangle [k<=n]*0^abs(L(C(n,2)/3) - L(C(k,2)/3)) where L(j/p) is the Legendre symbol of j and p.
1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1
Offset: 0
Examples
Triangle begins 1; 1, 1; 0, 0, 1; 1, 1, 0, 1; 1, 1, 0, 1, 1; 0, 0, 1, 0, 0, 1; 1, 1, 0, 1, 1, 0, 1; 1, 1, 0, 1, 1, 0, 1, 1; 0, 0, 1, 0, 0, 1, 0, 0, 1; 1, 1, 0, 1, 1, 0, 1, 1, 0, 1; 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
T[n_, k_]:= If[Abs[JacobiSymbol[Binomial[n, 2], 3] - JacobiSymbol[Binomial[k, 2], 3]]==0, 1, 0]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 20 2021 *)
-
Sage
def A117904(n,k): return 1 if abs(jacobi_symbol(binomial(n,2), 3) - jacobi_symbol(binomial(k,2), 3))==0 else 0 flatten([[A117904(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Oct 20 2021
Formula
G.f.: (1 +x*(1+y) +x^2*y^2 +x^3*y)/((1-x^3)*(1-x^3*y^3)).
T(n, k) = [k<=n] * 2^abs(L(C(n,2)/3) - L(C(k,2)/3)) mod 2.
Comments