A117930 Number of partitions of 2n into factorial parts (0! not allowed, i.e., only one kind of 1 can be a part). Also number of partitions of 2n+1 into factorial parts.
1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 36, 42, 48, 56, 64, 72, 82, 92, 102, 114, 126, 138, 153, 168, 183, 201, 219, 237, 258, 279, 300, 324, 348, 372, 400, 428, 456, 488, 520, 552, 588, 624, 660, 700, 740, 780, 825, 870, 915, 965, 1015, 1065, 1120, 1175, 1230
Offset: 0
Keywords
Examples
a(3) = 5 because the partitions of 6 into factorials are [6], [2,2,2], [2,2,1,1], [2,1,1,1,1] and [1,1,1,1,1,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 250 terms from Reinhard Zumkeller)
- Index entries for sequences related to factorial numbers
Programs
-
Haskell
a117930 n = p (tail a000142_list) $ 2*n where p _ 0 = 1 p ks'@(k:ks) m | m < k = 0 | otherwise = p ks' (m - k) + p ks m -- Reinhard Zumkeller, Dec 04 2011
-
Maple
g:=1/(1-x)/product(1-x^(j!/2),j=2..7): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=0..65); # second Maple program b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, b(n, i-1)+ `if`(i!>n, 0, b(n-i!, i))) end: a:= proc(n) local i; for i while(i!<2*n) do od; b(2*n, i) end: seq(a(n), n=0..100); # Alois P. Heinz, Jun 13 2012
-
Mathematica
f[n_] := Length@ IntegerPartitions[2 n, All, {1, 2, 6, 24, 120}]; Array[f, 57, 0] (* Robert G. Wilson v, Oct 02 2014 *) b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i!>n, 0, b[n-i!, i] ] ]; a[n_] := Module[{i}, For[i=1, i!<2*n, i++]; b[2*n, i]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 29 2015, after Alois P. Heinz *)
Formula
G.f.: 1/((1-x)*Product_{j>=2} (1 - x^(j!/2))).
Extensions
An incorrect g.f. was deleted by N. J. A. Sloane, Sep 16 2009
Comments