cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117930 Number of partitions of 2n into factorial parts (0! not allowed, i.e., only one kind of 1 can be a part). Also number of partitions of 2n+1 into factorial parts.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 36, 42, 48, 56, 64, 72, 82, 92, 102, 114, 126, 138, 153, 168, 183, 201, 219, 237, 258, 279, 300, 324, 348, 372, 400, 428, 456, 488, 520, 552, 588, 624, 660, 700, 740, 780, 825, 870, 915, 965, 1015, 1065, 1120, 1175, 1230
Offset: 0

Views

Author

Emeric Deutsch, Apr 04 2006

Keywords

Comments

a(n) = A064986(2n) = A064986(2n+1). The first 48 terms of this sequence agree with those of A090632.
a(n) = A064986(2*n) = A064986(2*n+1). - Reinhard Zumkeller, Dec 04 2011

Examples

			a(3) = 5 because the partitions of 6 into factorials are [6], [2,2,2], [2,2,1,1], [2,1,1,1,1] and [1,1,1,1,1,1].
		

Crossrefs

Programs

  • Haskell
    a117930 n = p (tail a000142_list) $ 2*n where
       p _          0             = 1
       p ks'@(k:ks) m | m < k     = 0
                      | otherwise = p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Dec 04 2011
  • Maple
    g:=1/(1-x)/product(1-x^(j!/2),j=2..7): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=0..65);
    # second Maple program
    b:= proc(n, i) option remember;
          `if`(n=0 or i=1, 1, b(n, i-1)+
          `if`(i!>n, 0, b(n-i!, i)))
        end:
    a:= proc(n) local i;
          for i while(i!<2*n) do od;
          b(2*n, i)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Jun 13 2012
  • Mathematica
    f[n_] := Length@ IntegerPartitions[2 n, All, {1, 2, 6, 24, 120}]; Array[f, 57, 0] (* Robert G. Wilson v, Oct 02 2014 *)
    b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i!>n, 0, b[n-i!, i] ] ]; a[n_] := Module[{i}, For[i=1, i!<2*n, i++]; b[2*n, i]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 29 2015, after Alois P. Heinz *)

Formula

G.f.: 1/((1-x)*Product_{j>=2} (1 - x^(j!/2))).

Extensions

An incorrect g.f. was deleted by N. J. A. Sloane, Sep 16 2009