A117939 Triangle related to powers of 3 partitions of n.
1, 2, 1, 1, -2, 1, 2, 0, 0, 1, 4, 2, 0, 2, 1, 2, -4, 2, 1, -2, 1, 1, 0, 0, -2, 0, 0, 1, 2, 1, 0, -4, -2, 0, 2, 1, 1, -2, 1, -2, 4, -2, 1, -2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 2, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, -4, 2, 0, 0, 0, 0, 0, 0, 1, -2, 1, 4, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 1, 8, 4, 0, 4, 2, 0, 0, 0, 0, 4, 2, 0, 2, 1
Offset: 0
Examples
Triangle begins 1; 2, 1; 1, -2, 1; 2, 0, 0, 1; 4, 2, 0, 2, 1; 2, -4, 2, 1, -2, 1; 1, 0, 0, -2, 0, 0, 1; 2, 1, 0, -4, -2, 0, 2, 1; 1, -2, 1, -2, 4, -2, 1, -2, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= Sum[JacobiSymbol[Binomial[n, j], 3]*JacobiSymbol[Binomial[n-j, k], 3], {j, 0, n}]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 29 2021 *)
-
PARI
T(n,k)=(matrix(n+1,n+1,r,c,(binomial(r-1,c-1)+1)%3-1)^2)[n+1,k+1] \\ Paul D. Hanna, Jul 08 2006
-
Sage
def A117939(n, k): return sum(jacobi_symbol(binomial(n, j), 3)*jacobi_symbol(binomial(n-j, k), 3) for j in (0..n)) flatten([[A117939(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Oct 29 2021
Formula
Triangle T(n,k) = Sum_{j=0..n} L(C(n,j)/3)*L(C(n-j,k)/3) where L(j/p) is the Legendre symbol of j and p.
T(n, k) mod 2 = A117944(n,k).
T(n, 0) = A059151(n).
T(n, 1) = A117946(n).
Sum_{k=0..n} T(n, k) = A117940(n).
Matrix square of triangle A117947. Matrix log is the integer triangle A120854. - Paul D. Hanna, Jul 08 2006