A117941
Inverse of number triangle A117939.
Original entry on oeis.org
1, -2, 1, -5, 2, 1, -2, 0, 0, 1, 4, -2, 0, -2, 1, 10, -4, -2, -5, 2, 1, -5, 0, 0, 2, 0, 0, 1, 10, -5, 0, -4, 2, 0, -2, 1, 25, -10, -5, -10, 4, 2, -5, 2, 1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, -2, 0, 0, 0, 0, 0, 0, 0, -2, 1, 10, -4, -2, 0, 0, 0, 0, 0, 0, -5, 2, 1, 4, 0, 0, -2, 0, 0, 0, 0, 0, -2, 0, 0, 1, -8, 4, 0, 4, -2, 0, 0, 0, 0, 4, -2, 0, -2, 1
Offset: 0
Triangle begins
1;
-2, 1;
-5, 2, 1;
-2, 0, 0, 1;
4, -2, 0, -2, 1;
10, -4, -2, -5, 2, 1;
-5, 0, 0, 2, 0, 0, 1;
10, -5, 0, -4, 2, 0, -2, 1;
25, -10, -5, -10, 4, 2, -5, 2, 1;
-
M[n_, k_]:= M[n, k]= If[k>n, 0, Sum[JacobiSymbol[Binomial[n, j], 3]*JacobiSymbol[Binomial[n-j, k], 3], {j,0,n}], 0];
m:= m= With[{q = 60}, Table[M[n, k], {n,0,q}, {k,0,q}]];
T[n_, k_]:= Inverse[m][[n+1, k+1]];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 29 2021 *)
A120854
Matrix log of A117939, read by rows, consisting only of 0's, 3's and signed 2's.
Original entry on oeis.org
0, 2, 0, 3, -2, 0, 2, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 3, -2, 0, 3, 0, 0, -2, 0, 0, 0, 0, 3, 0, 0, -2, 0, 2, 0, 0, 0, 3, 0, 0, -2, 3, -2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 3, -2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 3, -2, 0, 0, 0, 0, 0
Offset: 0
Triangle begins:
0;
2, 0;
3,-2, 0;
2, 0, 0, 0;
0, 2, 0, 2, 0;
0, 0, 2, 3,-2, 0;
3, 0, 0,-2, 0, 0, 0;
0, 3, 0, 0,-2, 0, 2, 0;
0, 0, 3, 0, 0,-2, 3,-2, 0;
2, 0, 0, 0, 0, 0, 0, 0, 0, 0; ...
Matrix exponentiation gives A117939:
1;
2, 1;
1,-2, 1;
2, 0, 0, 1;
4, 2, 0, 2, 1;
2,-4, 2, 1,-2, 1;
1, 0, 0,-2, 0, 0, 1;
2, 1, 0,-4,-2, 0, 2, 1;
1,-2, 1,-2, 4,-2, 1,-2, 1; ...
and A117939 is the matrix square of A117947:
1;
1, 1;
1,-1, 1;
1, 0, 0, 1;
1, 1, 0, 1, 1;
1,-1, 1, 1,-1, 1;
1, 0, 0,-1, 0, 0, 1;
1, 1, 0,-1,-1, 0, 1, 1;
1,-1, 1,-1, 1,-1, 1,-1, 1; ...
-
/* Generated as the Matrix LOG of A117939: */ T(n,k)=local(M=matrix(n+1,n+1,r,c,(binomial(r-1,c-1)+1)%3-1)^2, L=sum(i=1,#M,-(M^0-M)^i/i));return(L[n+1,k+1])
-
/* Generated as the Ternary Fractal: */ T(n,k)=local(r=n,c=k,s=floor(log(n+1)/log(3))+1,u=vector(s),v=vector(s),d,e); if(n<=k,0,if(n<3&k<3,[0,0,0;2,0,0;3,-2,0][n+1,k+1], for(i=1,#u,u[i]=r%3;r=r\3);for(i=1,#v,v[i]=c%3;c=c\3); d=0;for(i=1,#v,if(u[i]!=v[i],d+=1;e=i));if(d==1,T(u[e],v[e]),0)))
A120855
Row sums of triangle A120854, which is the matrix log of triangle A117939.
Original entry on oeis.org
0, 2, 1, 2, 4, 3, 1, 3, 2, 2, 4, 3, 4, 6, 5, 3, 5, 4, 1, 3, 2, 3, 5, 4, 2, 4, 3, 2, 4, 3, 4, 6, 5, 3, 5, 4, 4, 6, 5, 6, 8, 7, 5, 7, 6, 3, 5, 4, 5, 7, 6, 4, 6, 5, 1, 3, 2, 3, 5, 4, 2, 4, 3, 3, 5, 4, 5, 7, 6, 4, 6, 5, 2, 4, 3, 4, 6, 5, 3, 5, 4, 2, 4, 3, 4, 6, 5, 3, 5, 4, 4, 6, 5, 6, 8, 7, 5, 7, 6, 3, 5, 4, 5, 7, 6
Offset: 0
-
f[n_] := DigitCount[n, 3] /. {a_, b_, c_} -> 2a + b + 0c; Array[f, 105, 0] (* Robert G. Wilson v, Jul 31 2012 *)
-
{a(n)=local(M=matrix(n+1,n+1,r,c,(binomial(r-1,c-1)+1)%3-1)^2, L=sum(i=1,#M,-(M^0-M)^i/i));return(sum(k=0,n,L[n+1,k+1]))}
A117940
a(0)=1, thereafter a(3n) = a(3n+1)/3 = a(n), a(3n+2)=0.
Original entry on oeis.org
1, 3, 0, 3, 9, 0, 0, 0, 0, 3, 9, 0, 9, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 9, 0, 9, 27, 0, 0, 0, 0, 9, 27, 0, 27, 81, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 9, 0, 9, 27, 0, 0, 0, 0, 9, 27, 0, 27, 81, 0, 0, 0, 0, 0, 0
Offset: 0
Contribution from Omar E. Pol, Nov 26 2011 (Start):
When written as a triangle this begins:
1,
3,0,
3,9,0,0,0,0,
3,9,0,9,27,0,0,0,0,0,0,0,0,0,0,0,0,0,
3,9,0,9,27,0,0,0,0,9,27,0,27,81,0,0,0,0,0,0,0,0,0,0,0,...
(End)
For generating functions Prod_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2)
A000012 and
A000027, (1,3)
A039966 and
A005836, (1,4)
A151666 and
A000695, (1,5)
A151667 and
A033042, (2,2)
A001316, (2,3)
A151668, (2,4)
A151669, (2,5)
A151670, (3,2)
A048883, (3,3)
A117940, (3,4)
A151665, (3,5)
A151671, (4,2)
A102376, (4,3)
A151672, (4,4)
A151673, (4,5)
A151674.
A117944
Triangle related to powers of 3 partitions of n.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Triangle begins
1;
0, 1;
1, 0, 1;
0, 0, 0, 1;
0, 0, 0, 0, 1;
0, 0, 0, 1, 0, 1;
1, 0, 0, 0, 0, 0, 1;
0, 1, 0, 0, 0, 0, 0, 1;
1, 0, 1, 0, 0, 0, 1, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1;
-
T[n_, k_]:= Mod[Sum[JacobiSymbol[Binomial[n, j], 3]*JacobiSymbol[Binomial[n-j, k], 3], {j,0,n}], 2];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 29 2021 *)
-
def A117944(n, k): return ( sum(jacobi_symbol(binomial(n, j), 3)*jacobi_symbol(binomial(n-j, k), 3) for j in (0..n)) )%2
flatten([[A117944(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Oct 29 2021
A117947
T(n,k)=L(C(n,k)/3) where L(j/p) is the Legendre symbol of j and p.
Original entry on oeis.org
1, 1, 1, 1, -1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, -1, 1, 1, -1, 1, 1, 0, 0, -1, 0, 0, 1, 1, 1, 0, -1, -1, 0, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 1, -1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, -1, 1, 1, -1, 1, 0, 0, 0, 1, -1, 1, 1, -1, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, -1, 1;
1, 0, 0, 1;
1, 1, 0, 1, 1;
...
A117946
a(3n)=0, a(3n+1)/a(1)=a(3n+2)/a(2)=A059151(n).
Original entry on oeis.org
0, 1, -2, 0, 2, -4, 0, 1, -2, 0, 2, -4, 0, 4, -8, 0, 2, -4, 0, 1, -2, 0, 2, -4, 0, 1, -2, 0, 2, -4, 0, 4, -8, 0, 2, -4, 0, 4, -8, 0, 8, -16, 0, 4, -8, 0, 2, -4, 0, 4, -8, 0, 2, -4, 0, 1, -2, 0, 2, -4, 0, 1, -2, 0, 2, -4, 0, 4, -8, 0, 2, -4, 0, 1, -2, 0, 2, -4, 0, 1, -2, 0, 2, -4, 0, 4, -8, 0, 2, -4, 0, 4, -8, 0, 8, -16, 0, 4, -8
Offset: 0
Showing 1-7 of 7 results.
Comments