A117972 Numerator of zeta'(-2n), n >= 0.
1, -1, 3, -45, 315, -14175, 467775, -42567525, 638512875, -97692469875, 9280784638125, -2143861251406875, 147926426347074375, -48076088562799171875, 9086380738369043484375, -3952575621190533915703125
Offset: 0
Examples
-1/4, 3/4, -45/8, 315/4, -14175/8, 467775/8, -42567525/16, ... -zeta(3)/(4*Pi^2), (3*zeta(5))/(4*Pi^4), (-45*zeta(7))/(8*Pi^6), (315*zeta(9))/(4*Pi^8), (-14175*zeta(11))/(8*Pi^10), ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Fernando Izaurieta, Ricardo RamÃrez and Eduardo RodrÃguez, Dirac Matrices for Chern-Simons Gravity, arXiv:1106.1648 [math-ph], 2011-2012.
- J. Sondow and E. W. Weisstein, MathWorld: Riemann Zeta Function
Crossrefs
Programs
-
Maple
# Without rational arithmetic a := n -> (-1)^n*(2*n)!*2^(add(i,i=convert(n,base,2))-2*n); # Peter Luschny, May 02 2009
-
Mathematica
Table[Numerator[(2 n)!/2^(2 n + 1) (-1)^n], {n, 0, 30}]
-
Maxima
L:taylor(1/x*sin(sqrt(x))^2,x,0,15); makelist(denom(coeff(L,x,n))*(-1)^(n+1),n,0,15); /* Vladimir Kruchinin, May 30 2011 */
Formula
a(n) = numerator(f(n)) where f(n) = (2*n)!/2^(2*n + 1)(-1)^n, from the Mathematica code.
From Terry D. Grant, May 28 2017: (Start)
|a(n)| = A049606(2n).
a(n) = -numerator(Bernoulli(2n)/z(n)) where Bernoulli(2n) = A000367(n) / A002445(n) and z(n) = A046988(n) / A002432(n) for n > 0. (End) [Corrected by Andrey Zabolotskiy, Sep 23 2021]
Extensions
First term added, offset changed and edited by Johannes W. Meijer, May 15 2009
Comments