cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A048896 a(n) = 2^(A000120(n+1) - 1), n >= 0.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 4, 1, 2, 2, 4, 2, 4, 4, 8, 1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 2, 4, 4
Offset: 0

Views

Author

Keywords

Comments

a(n) = 2^A048881 = 2^{maximal power of 2 dividing the n-th Catalan number (A000108)}. [Comment corrected by N. J. A. Sloane, Apr 30 2018]
Row sums of triangle A128937. - Philippe Deléham, May 02 2007
a(n) = sum of (n+1)-th row terms of triangle A167364. - Gary W. Adamson, Nov 01 2009
a(n), n >= 1: Numerators of Maclaurin series for 1 - ((sin x)/x)^2, A117972(n), n >= 2: Denominators of Maclaurin series for 1 - ((sin x)/x)^2, the correlation function in Montgomery's pair correlation conjecture. - Daniel Forgues, Oct 16 2011
For n > 0: a(n) = A007954(A007931(n)). - Reinhard Zumkeller, Oct 26 2012
a(n) = A261363(2*(n+1), n+1). - Reinhard Zumkeller, Aug 16 2015
From Gus Wiseman, Oct 30 2022: (Start)
Also the number of coarsenings of the (n+1)-th composition in standard order. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. See link for sequences related to standard compositions. For example, the a(10) = 4 coarsenings of (2,1,1) are: (2,1,1), (2,2), (3,1), (4).
Also the number of times n+1 appears in A357134. For example, 11 appears at positions 11, 20, 33, and 1024, so a(10) = 4.
(End)

Examples

			From _Omar E. Pol_, Jul 21 2009: (Start)
If written as a triangle:
  1;
  1,2;
  1,2,2,4;
  1,2,2,4,2,4,4,8;
  1,2,2,4,2,4,4,8,2,4,4,8,4,8,8,16;
  1,2,2,4,2,4,4,8,2,4,4,8,4,8,8,16,2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32;
  ...,
the first half-rows converge to Gould's sequence A001316.
(End)
		

Crossrefs

This is Guy Steele's sequence GS(3, 5) (see A135416).
Equals first right hand column of triangle A160468.
Equals A160469(n+1)/A002425(n+1).
Standard compositions are listed by A066099.
The opposite version (counting refinements) is A080100.
The version for Heinz numbers of partitions is A317141.

Programs

  • Haskell
    a048896 n = a048896_list !! n
    a048896_list = f [1] where f (x:xs) = x : f (xs ++ [x,2*x])
    -- Reinhard Zumkeller, Mar 07 2011
    
  • Haskell
    import Data.List (transpose)
    a048896 = a000079 . a000120
    a048896_list = 1 : concat (transpose
       [zipWith (-) (map (* 2) a048896_list) a048896_list,
        map (* 2) a048896_list])
    -- Reinhard Zumkeller, Jun 16 2013
    
  • Magma
    [Numerator(2^n / Factorial(n+1)): n in [0..100]]; // Vincenzo Librandi, Apr 12 2014
  • Maple
    a := n -> 2^(add(i,i=convert(n+1,base,2))-1): seq(a(n), n=0..97); # Peter Luschny, May 01 2009
  • Mathematica
    NestList[Flatten[#1 /. a_Integer -> {a, 2 a}] &, {1}, 4] // Flatten (* Robert G. Wilson v, Aug 01 2012 *)
    Table[Numerator[2^n / (n + 1)!], {n, 0, 200}] (* Vincenzo Librandi, Apr 12 2014 *)
    Denominator[Table[BernoulliB[2*n] / (Zeta[2*n]/Pi^(2*n)), {n, 1, 100}]] (* Terry D. Grant, May 29 2017 *)
    Table[Denominator[((2 n)!/2^(2 n + 1)) (-1)^n], {n, 1, 100}]/4 (* Terry D. Grant, May 29 2017 *)
    2^IntegerExponent[CatalanNumber[Range[0,100]],2] (* Harvey P. Dale, Apr 30 2018 *)
  • PARI
    a(n)=if(n<1,1,if(n%2,a(n/2-1/2),2*a(n-1)))
    
  • PARI
    a(n) = 1 << (hammingweight(n+1)-1); \\ Kevin Ryde, Feb 19 2022
    

Formula

a(n) = 2^A048881(n).
a(n) = 2^k if 2^k divides A000108(n) but 2^(k+1) does not divide A000108(n).
It appears that a(n) = Sum_{k=0..n} binomial(2*(n+1), k) mod 2. - Christopher Lenard (c.lenard(AT)bendigo.latrobe.edu.au), Aug 20 2001
a(0) = 1; a(2*n) = 2*a(2*n-1); a(2*n+1) = a(n).
a(n) = (1/2) * A001316(n+1). - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 26 2004
It appears that a(n) = Sum_{k=0..2n} floor(binomial(2n+2, k+1)/2)(-1)^k = 2^n - Sum_{k=0..n+1} floor(binomial(n+1, k)/2). - Paul Barry, Dec 24 2004
a(n) = Sum_{k=0..n} (T(n,k) mod 2) where T = A039598, A053121, A052179, A124575, A126075, A126093. - Philippe Deléham, May 02 2007
a(n) = numerator(b(n)), where sin(x)^2/x = Sum_{n>0} b(n)*(-1)^n x^(2*n-1). - Vladimir Kruchinin, Feb 06 2013
a((2*n+1)*2^p-1) = A001316(n), p >= 0 and n >= 0. - Johannes W. Meijer, Feb 12 2013
a(n) = numerator(2^n / (n+1)!). - Vincenzo Librandi, Apr 12 2014
a(2n) = (2n+1)!/(n!n!)/A001803(n). - Richard Turk, Aug 23 2017
a(2n-1) = (2n-1)!/(n!(n-1)!)/A001790(n). - Richard Turk, Aug 23 2017

Extensions

New definition from N. J. A. Sloane, Mar 01 2008

A061549 Denominator of probability that there is no error when average of n numbers is computed, assuming errors of +1, -1 are possible and they each occur with p=1/4.

Original entry on oeis.org

1, 8, 128, 1024, 32768, 262144, 4194304, 33554432, 2147483648, 17179869184, 274877906944, 2199023255552, 70368744177664, 562949953421312, 9007199254740992, 72057594037927936, 9223372036854775808, 73786976294838206464, 1180591620717411303424, 9444732965739290427392
Offset: 0

Views

Author

Leah Schmelzer (leah2002(AT)mit.edu), May 16 2001

Keywords

Comments

We observe that b(n) = log(a(n))/log(2) = A120738(n). Furthermore c(n+1) = b(n+1)-b(n) = A090739(n+1) and c(n+1)-3 = A007814(n+1) for n>=0. - Johannes W. Meijer, Jul 06 2009
Using WolframAlpha, it appears that 2*a(n) gives the coefficients of Pi in the denominators of the residues of f(z) = 2z choose z at odd negative half integers. E.g., the residues of f(z) at z = -1/2, -3/2, -5/2 are 1/(2*Pi), 1/(16*Pi), and 3/(256*Pi) respectively. - Nicholas Juricic, Mar 31 2022

Examples

			For n=1, the binomial(2*n-1/2, -1/2) yields the term 3/8. The denominator of this term is 8, which is the second term of the sequence.
		

Crossrefs

Bisection of A046161.
Appears in A162448.

Programs

  • Magma
    A061549:= func< n | 2^(4*n-(&+Intseq(2*n, 2))) >;
    [A061549(n): n in [0..30]]; // G. C. Greubel, Oct 20 2024
  • Maple
    seq(denom(binomial(2*n-1/2, -1/2)), n=0..20);
  • Mathematica
    Table[Denominator[(4*n)!/(2^(4*n)*(2*n)!^2) ], {n, 0, 20}] (* Indranil Ghosh, Mar 11 2017 *)
  • PARI
    for(n=0, 20, print1(denominator((4*n)!/(2^(4*n)*(2*n)!^2)),", ")) \\ Indranil Ghosh, Mar 11 2017
    
  • Python
    import math
    f = math.factorial
    def A061549(n): return (2**(4*n)*f(2*n)**2) // math.gcd(f(4*n), (2**(4*n)*f(2*n)**2)) # Indranil Ghosh, Mar 11 2017
    
  • Sage
    # uses[A000120]
    def a(n): return 1 << (4*n - A000120(n))
    [a(n) for n in (0..19)]  # Peter Luschny, Dec 02 2012
    

Formula

a(n) = denominator of binomial(2*n-1/2, -1/2).
a(n) are denominators of coefficients of 1/(sqrt(1+x)-sqrt(1-x)) power series. - Benoit Cloitre, Mar 12 2002
a(n) = 16^n/A001316(n). - Paul Barry, Jun 29 2006
a(n) = denom((4*n)!/(2^(4*n)*(2*n)!^2)). - Johannes W. Meijer, Jul 06 2009
a(n) = abs(A067624(n)/A117972(n)). - Johannes W. Meijer, Jul 06 2009

Extensions

More terms from Asher Auel, May 20 2001

A156769 a(n) = denominator(2^(2*n-2)/factorial(2*n-1)).

Original entry on oeis.org

1, 3, 15, 315, 2835, 155925, 6081075, 638512875, 10854718875, 1856156927625, 194896477400625, 49308808782358125, 3698160658676859375, 1298054391195577640625, 263505041412702261046875, 122529844256906551386796875, 4043484860477916195764296875
Offset: 1

Views

Author

Johannes W. Meijer, Feb 15 2009

Keywords

Comments

Resembles A036279, the denominators in the Taylor series for tan(x). The first difference occurs at a(12).
The numerators of the two formulas for this sequence lead to A001316, Gould's sequence.
Stephen Crowley indicated on Aug 25 2008 that a(n) = denominator(Zeta(2*n)/Zeta(1-2*n)) and here numerator((Zeta(2*n)/Zeta(1-2*n))/(2*(-1)^(n)*(Pi)^(2*n))) leads to Gould's sequence.
This sequence appears in the Eta and Zeta triangles A160464 and A160474. Its resemblance to the sequence of the denominators of the Taylor series for tan(x) led to the conjecture A156769(n) = A036279(n)*A089170(n-1). - Johannes W. Meijer, May 24 2009

Crossrefs

Cf. A036279 Denominators in Taylor series for tan(x).
Cf. A001316 Gould's sequence appears in the numerators.
Cf. A000265, A036279, A089170, A117972, A160464, A160469 (which resembles the numerators of the Taylor series for tan(x)), A160474. - Johannes W. Meijer, May 24 2009

Programs

  • Magma
    [Denominator(4^(n-1)/Factorial(2*n-1)): n in [1..25]]; // G. C. Greubel, Jun 19 2021
    
  • Maple
    a := n ->(2*n-1)!*2^(add(i,i=convert(n-1,base,2))-2*n+2); # Peter Luschny, May 02 2009
  • Mathematica
    a[n_] := Denominator[4^(n-1)/(2n-1)!];
    Array[a, 15] (* Jean-François Alcover, Jun 20 2018 *)
  • Sage
    [denominator(4^(n-1)/factorial(2*n-1)) for n in (1..25)] # G. C. Greubel, Jun 19 2021

Formula

a(n) = denominator( Product_{k=1..n-1} 2/(k*(2*k+1)) ).
G.f.: (1/2)*z^(1/2)*sinh(2*z^(1/2)).
From Johannes W. Meijer, May 24 2009: (Start)
a(n) = abs(A117972(n))/A000265(n).
a(n) = A036279(n)*A089170(n-1). (End)
a(n) = A049606(2*n-1). - Zhujun Zhang, May 29 2019

A120738 a(n) = 4*n - A000120(n).

Original entry on oeis.org

0, 3, 7, 10, 15, 18, 22, 25, 31, 34, 38, 41, 46, 49, 53, 56, 63, 66, 70, 73, 78, 81, 85, 88, 94, 97, 101, 104, 109, 112, 116, 119, 127, 130, 134, 137, 142, 145, 149, 152, 158, 161, 165, 168, 173, 176, 180, 183, 190, 193, 197, 200, 205, 208, 212, 215, 221, 224, 228
Offset: 0

Views

Author

Paul Barry, Jun 29 2006

Keywords

Comments

Partial sums of A090739.
a(n) is also the increasing sequence of exponents of x in Product_{k > 1} (1 + x^(2^k - 1)). - Paul Pearson (ppearson(AT)rochester.edu), Aug 06 2008
Related to partial sums of the Ruler sequence A001511 by a(n) = A005187(2n), therefore {a(n)+1} are the indices of 1's in A252488. - M. F. Hasler, Jan 22 2015

Crossrefs

Programs

  • Magma
    A120738:= func< n | 4*n-(&+Intseq(n, 2)) >;
    [A120738(n): n in [0..100]]; // G. C. Greubel, Oct 20 2024
  • Maple
    a:=n->simplify(log[2](16^n/(add(modp(binomial(n,k),2),k=0..n))));
    a:=n->simplify(log[2](16^n/(2^(n-(padic[ordp](n!,2)))))); # Note: n-(padic[ordp](n!,2)) is the number of 1's in the binary expansion of n. - Paul Pearson (ppearson(AT)rochester.edu), Aug 06 2008
  • Mathematica
    Table[4 n - DigitCount[n, 2, 1], {n, 0, 58}] (* Michael De Vlieger, Nov 06 2016 *)
  • PARI
    {a(n) = if( n < 0, 0, 4*n - subst( Pol( binary( n ) ), x, 1) ) } /* Michael Somos, Aug 28 2007 */
    
  • PARI
    a(n) = 4*n - hammingweight(n); \\ Michel Marcus, Nov 06 2016
    
  • Python
    # Python 3.10
    def A120738(n): return (n<<2)-n.bit_count() # Chai Wah Wu, Jul 12 2022
    
  • Sage
    A120738 = lambda n: 4*n - sum(n.digits(2))
    print([A120738(n) for n in (0..58)]) # Peter Luschny, Nov 06 2016
    

Formula

a(n) = log_2(16^n/A001316(n)). [This was the original definition.]
a(n) = 2n + A005187(n).
a(n) = 3n + A011371(n).
a(n) = 4n - log_2(A001316(n)).
a(n) = log_2(A061549(n)).
2^a(n) = 16^n/A001316(n) = A061549(n).
a(n) = A086343(n) + A001511(n) for n>0. - Alford Arnold, Mar 23 2009
2^a(n) = abs(A067624(n)/A117972(n)). - Johannes W. Meijer, Jul 06 2009
a(n) = Sum_{k>=0} (A030308(n,k)*A000225(k+2)). - Philippe Deléham, Oct 16 2011
a(n) = A005187(2n). - M. F. Hasler, Jan 22 2015

Extensions

Definition simplified by M. F. Hasler, Dec 29 2012

A160469 The left hand column of the triangle A160468.

Original entry on oeis.org

1, 1, 2, 17, 62, 1382, 21844, 929569, 6404582, 443861162, 18888466084, 1936767361654, 58870668456604, 8374643517010684, 689005380505609448, 129848163681107301953, 1736640792209901647222, 418781231495293038913922
Offset: 1

Views

Author

Johannes W. Meijer, May 24 2009

Keywords

Comments

Resembles A002430, the numerators of the Taylor series for tan(x). The first difference occurs at a(12). (Its resemblance to this sequence led to the conjecture A160469(n) = A002430(n)*A089170(n-1).)

Crossrefs

Equals the first left hand column of A160468.
Equals A002430(n)*A089170(n-1).
Equals (A002430(n)/A036279(n))*(A117972(n)/A000265(n)).
Equals A048896(n-1)*A002425(n).
Cf. A156769 (which resembles the denominators of the Taylor series for tan(x)).

Formula

a(n) = A002430(n)*A089170(n-1) with A002430 (n) = numer((-1)^(n-1)*2^(2*n)*(2^(2*n)-1)* bernoulli(2*n)/(2*n)!) and A089170 (n-1) = numer(2*bernoulli(2*n)* (4^n-1)/(2*n))/ numer((4^n-1)*bernoulli(2*n)/(2*n)!) for n = 1, 2, 3, ....

A117973 a(n) = 2^(wt(n)+1), where wt() = A000120().

Original entry on oeis.org

2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 4, 8, 8, 16, 8, 16, 16, 32, 8, 16, 16, 32, 16, 32, 32, 64, 4, 8, 8, 16, 8, 16, 16, 32, 8, 16, 16, 32, 16, 32, 32, 64, 8, 16, 16, 32, 16, 32, 32, 64, 16, 32, 32, 64, 32, 64, 64, 128, 4, 8, 8, 16, 8, 16, 16, 32, 8, 16, 16, 32, 16, 32
Offset: 0

Views

Author

Eric W. Weisstein, Apr 06 2006

Keywords

Comments

Denominator of Zeta'(-2n).
If Gould's sequence A001316 is written as a triangle, this is what the rows converge to. In other words, let S_0 = [2], and construct S_{n+1} by following S_n with 2*S_n. Then this is S_{oo}. - N. J. A. Sloane, May 30 2009
In A160464 the coefficients of the ES1 matrix are defined. This matrix led to the discovery that the successive differences of the ES1[1-2*m,n] coefficients for m = 1, 2, 3, ..., are equal to the values of Zeta'(-2n), see also A094665 and A160468. - Johannes W. Meijer, May 24 2009

Examples

			-zeta(3)/(4*Pi^2), (3*zeta(5))/(4*Pi^4), (-45*zeta(7))/(8*Pi^6), (315*zeta(9))/(4*Pi^8), (-14175*zeta(11))/(8*Pi^10), ...
		

Crossrefs

Programs

  • Maple
    S := [2]; S := [op(S), op(2*S)]; # repeat ad infinitum! - N. J. A. Sloane, May 30 2009
    a := n -> 2^(add(i,i=convert(n,base,2))+1); # Peter Luschny, May 02 2009
  • Mathematica
    Denominator[(2*n)!/2^(2*n + 1)]

Formula

For n>=0, a(n) = 2 * A001316(n). - N. J. A. Sloane, May 30 2009
For n>0, a(n) = 4 * A048896(n). - Peter Luschny, May 02 2009
a(0) = 2; for n>0, write n = 2^i + j where 0 <= j < 2^i; then a(n) = 2*a(j).
a((2*n+1)*2^p-1) = 2^(p+1) * A001316(n), p >= 0. - Johannes W. Meijer, Jan 28 2013

Extensions

Entry revised by N. J. A. Sloane, May 30 2009

A160468 Triangle of polynomial coefficients related to the o.g.f.s of the RES1 polynomials.

Original entry on oeis.org

1, 1, 2, 1, 17, 26, 2, 62, 192, 60, 1, 1382, 7192, 5097, 502, 2, 21844, 171511, 217186, 55196, 2036, 2, 929569, 10262046, 20376780, 9893440, 1089330, 16356, 4, 6404582, 94582204, 271154544, 215114420, 48673180, 2567568, 16376, 1
Offset: 1

Views

Author

Johannes W. Meijer, May 24 2009

Keywords

Comments

In A160464 we defined the ES1 matrix by ES1[2*m-1,n=1] and in A094665 it was shown that the n-th term of the coefficients of matrix row ES1[1-2*m,n] for m >= 1 can be generated with the RES1(1-2*m,n) polynomials.
We define the o.g.f.s. of these polynomials by GFRES1(z,1-2*m) = sum(RES1(1-2*m,n)*z^(n-1), n=1..infinity) for m >= 1. The general expression of the o.g.f.s. is GFRES1(z,1-2*m) = (-1)*RE(z,1-2*m)/(2*p(m-1)*(z-1)^(m)). The p(m-1), m >= 1, sequence is Gould's sequence A001316.
The coefficients of the RE(z,1-2*m) polynomials lead to the triangle given above.
The E(z,n) = numer(sum((-1)^(n+1)*k^n*z^(k-1), k=1..infinity)) polynomials with n >= 1, see the Maple algorithm, lead to the Eulerian numbers A008292.
Some of our results are conjectures based on numerical evidence.

Examples

			The first few rows are:
[1]
[1]
[2, 1]
[17, 26, 2]
[62, 192, 60, 1]
The first few polynomials RE(z,m) are:
RE(z,-1) = 1
RE(z,-3) = 1
RE(z,-5) = 2+z
RE(z,-7) = 17+26*z+2*z^2
The first few GFRES1(z,m) are:
GFRES1(z,-1) = -(1/1)*(1)/(2*(z-1)^1)
GFRES1(z,-3) = -(1/2)*(1)/(2*(z-1)^2)
GFRES1(z,-5) = -(1/2)*(2+z)/(2*(z-1)^3)
GFRES1(z,-7) = -(1/4)*(17+26*z+2*z^2)/(2*(z-1)^4)
		

Crossrefs

For the Eulerian numbers E(n, k) see A008292.
The p(n) sequence equals Gould's sequence A001316.
The first right hand column of the triangle equals A048896.
The first left hand column equals A160469.
The row sums equal the absolute values of A117972.

Programs

  • Maple
    nmax := 8; mmax := nmax: T(0, x) := 1: for i from 1 to nmax do dgr := degree(T(i-1, x), x): for na from 0 to dgr do c(na) := coeff(T(i-1, x), x, na) od: T(i-1, x+1) := 0: for nb from 0 to dgr do T(i-1, x+1) := T(i-1, x+1) + c(nb)*(x+1)^nb od: for nc from 0 to dgr do ECGP(i-1, nc+1) := coeff(T(i-1, x), x, nc) od: T(i, x) := expand((2*x+1)*(x+1)*T(i-1, x+1) - 2*x^2*T(i-1, x)) od: dgr := degree (T(nmax, x), x): kmax := nmax: for k from 1 to kmax do p := k: for m from 1 to k do E(m, k) := sum((-1)^(m-q)*(q^k)*binomial(k+1, m-q), q=1..m) od: fx(p) := (-1)^(p+1) * (sum(E(r, k)*z^(k-r), r=1..k))/(z-1)^(p+1): GF(-(2*p+1)) := sort(simplify(((-1)^p* 1/2^(p+1)) * sum(ECGP(k-1, k-s)*fx(k-s), s=0..k-1)), ascending): NUMGF(-(2*p+1)) := -numer(GF(-(2*p+1))): for n from 1 to mmax+1 do A(k+1, n) := coeff(NUMGF(-(2*p+1)), z, n-1) od: od: for m from 2 to mmax do A(1, m) := 0 od: A(1, 1) := 1: FT(1) := 1: for n from 1 to nmax do for m from 1 to n do FT((n)*(n-1)/2+m+1) := A(n+1, m) end do end do: a := n-> FT(n): seq(a(n), n = 1..(nmax+1)*(nmax)/2+1);
  • Mathematica
    T[ n_, k_] := Coefficient[a[2 n]/2^IntegerExponent[(2 n)!, 2], x, n + k];
    a[0] = a[1] = 1; a[ m_] := a[m] = With[{n = m - 1}, x Sum[ a[k] a[n - k] Binomial[n, k], {k, 0, n}]]; Join[{1}, Flatten@Table[T[n, k], {n, 1, 8}, {k, 0, n - 1}]] (* Michael Somos, Apr 22 2020 *)

Extensions

Edited by Johannes W. Meijer, Sep 23 2012

A162445 A sequence related to the Beta function.

Original entry on oeis.org

1, 8, 384, 46080, 2064384, 3715891200, 392398110720, 1428329123020800, 274239191619993600, 1678343852714360832000, 102043306245033138585600, 4714400748520531002654720000, 160144566965128191597871104000
Offset: 0

Views

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

We define F(z) = Beta(1/2-z/2,1/2+z/2)/Beta(1/2,1/2) = 1/sin(Pi*(1+z)/2) with Beta(z,w) the Beta function. See A008956 for a closely related function.
For the Taylor series expansion of F(z) we can write F(z) = sum(b(n)*(Pi*z)^(2*n)/a(n), n=0..infinity) with b(n) = A046976(n) and a(n) the sequence given above.
We can also write F(z) = sum(c(n)*(Pi*z)^(2*n)/d(n), n=0..infinity) with c(n) = A000364(n) and d(n) = A067624(n).
If p(n) is the exponent of the prime factor 2 in a(n) than p(n) = A120738(n) and 2^p(n) = A061549(n) = abs((4*n)!!/A117972(n)).

Crossrefs

Bisection of A050971
Equals 2^(2*n)*A046977(n)

Programs

  • Mathematica
    Denominator[Table[EulerE[2n]/(4n)!!,{n,0,20}]] (* Harvey P. Dale, Jun 23 2013 *)

Formula

a(n) = denom(euler(2*n)/(4*n)!!)
Showing 1-8 of 8 results.