cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118061 9800*n^2-5740*n-4059.

Original entry on oeis.org

1, 23661, 66921, 129781, 212241, 314301, 435961, 577221, 738081, 918541, 1118601, 1338261, 1577521, 1836381, 2114841, 2412901, 2730561, 3067821, 3424681, 3801141, 4197201, 4612861, 5048121, 5502981, 5977441, 6471501
Offset: 1

Views

Author

Charlie Marion, Apr 26 2006

Keywords

Comments

In general, all sequences of equations which contain every positive integer in order exactly once (a pairwise equal summed, ordered partition of the positive integers) may be defined as follows: For all k, let x(k)=A001652(k) and z(k)=A001653(k). Then if we define a(n) to be (x(k)+z(k))n^2-(z(k)-1)n-x(k), the following equation is true: a(n)+(a(n)+1)+...+(a(n)+(x(k)+z(k))n+(2x(k)+z(k)-1)/2)=(a(n)+ (x(k)+z(k))n+(2x(k)+z(k)+1)/2)+...+(a(n)+2(x(k)+z(k))n+x(k)); a(n)+2(x(k)+z(k))n+x(k))=a(n+1)-1; e.g., in this sequence, x(5)=A001652(5)=4059 and z(5)=A001653(5)=5741; cf. A000290,A118057-A118060.

Examples

			a(3)= 9800*3^2-5740*3-4059=66921, a(4)=9800*4^2-5740*4-4059=129781 and 66921+66922+...+103250=103251+...+129780
		

Programs

Formula

a(n)+(a(n)+1)+...+(a(n)+9800n+6929)=(a(n)+9800n+6930)+...+(a(n)+19600n+4059); a(n)+19600n+4059=a(n+1)-1; a(n+1)-1=a(n)+19600n+4059.
a(n)+(a(n)+1)+...+(a(n)+576n+203)=35(140n-41)(140n+29)(140n+99); e.g., 66921+66922+...+103250=3091156215=35*379*449*519.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). G.f.: x*(1+23658*x-4059*x^2)/(1-x)^3. - Colin Barker, Jul 01 2012

Extensions

Corrected by T. D. Noe, Nov 13 2006