A118064 Decimal expansion of the sum of the reciprocals of the palindromic primes A002385 (Honaker's constant).
1, 3, 2, 3, 9, 8, 2, 1, 4, 6, 8, 0, 6
Offset: 1
Examples
1.323982146806...
Links
- Carlos Rivera, Problems & Puzzles: Puzzle 056 - Honaker's Constant.
- Eric Weisstein, Palindromic Prime.
Programs
-
Mathematica
(* first obtain nextPalindrome from A007632 *) s = 1/11; c = 1; pp = 1; Do[ While[pp < 10^n, If[PrimeQ@ pp, c++; s = N[s + 1/pp, 64]]; pp = NextPalindrome@ pp]; If[ OddQ@ n, pp = 10^(n + 1); Print[{s, n, c}]], {n, 17}] (* Robert G. Wilson v, May 31 2009 *) generate[n_] := Block[{id = IntegerDigits@n, insert = {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}}, FromDigits@ Join[id, #, Reverse@ id] & /@ insert]; sm = N[Plus @@ (1/{2, 3, 5, 7, 11}), 64]; k = 1; Do [While[k < 10^n, sm = N[sm + Plus @@ (1/Select[ generate@k, PrimeQ]), 128]; k++ ]; Print[{2 n + 1, sm}], {n, 9}] (* Robert G. Wilson v, Nov 01 2010 *)
Formula
Equals Sum_{p} 1/p, where p ranges over the palindromic primes.
Extensions
Corrected by Eric W. Weisstein, May 14 2006
More terms from Robert G. Wilson v, Nov 01 2010
Entry revised by N. J. A. Sloane, May 05 2013
Comments