cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118092 Odd primes raised to odd prime powers.

Original entry on oeis.org

27, 125, 243, 343, 1331, 2187, 2197, 3125, 4913, 6859, 12167, 16807, 24389, 29791, 50653, 68921, 78125, 79507, 103823, 148877, 161051, 177147, 205379, 226981, 300763, 357911, 371293, 389017, 493039, 571787, 704969, 823543, 912673, 1030301
Offset: 1

Views

Author

Jonathan Vos Post, May 11 2006

Keywords

Comments

Subset of A053810 Prime powers of prime numbers. Subset of A000961 Prime powers. Subsets include A030078 Cubes of primes, A050997 Fifth powers of primes.

Crossrefs

Programs

  • Mathematica
    With[{prs=Prime[Range[2,30]]},Take[Union[First[#]^Last[#]&/@ Tuples[prs,2]],40]] (* Harvey P. Dale, Dec 23 2011 *)
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A118092(n):
        def f(x): return int(n+x-sum(primepi(integer_nthroot(x, p)[0])-1 for p in primerange(3,x.bit_length())))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024

Formula

{p^q where p is in A065091 and q is in A065091}.
Sum_{n>=1} 1/a(n) = Sum_{p odd prime} P(p) - A051006 + 1/4 = 0.054745292329555814476..., where P(s) is the prime zeta function. - Amiram Eldar, Sep 13 2024

Extensions

Extended by Ray Chandler, Oct 28 2008