A118092 Odd primes raised to odd prime powers.
27, 125, 243, 343, 1331, 2187, 2197, 3125, 4913, 6859, 12167, 16807, 24389, 29791, 50653, 68921, 78125, 79507, 103823, 148877, 161051, 177147, 205379, 226981, 300763, 357911, 371293, 389017, 493039, 571787, 704969, 823543, 912673, 1030301
Offset: 1
Programs
-
Mathematica
With[{prs=Prime[Range[2,30]]},Take[Union[First[#]^Last[#]&/@ Tuples[prs,2]],40]] (* Harvey P. Dale, Dec 23 2011 *)
-
Python
from sympy import primepi, integer_nthroot, primerange def A118092(n): def f(x): return int(n+x-sum(primepi(integer_nthroot(x, p)[0])-1 for p in primerange(3,x.bit_length()))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024
Formula
Sum_{n>=1} 1/a(n) = Sum_{p odd prime} P(p) - A051006 + 1/4 = 0.054745292329555814476..., where P(s) is the prime zeta function. - Amiram Eldar, Sep 13 2024
Extensions
Extended by Ray Chandler, Oct 28 2008
Comments