cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118094 Numbers of unrooted hypermaps on the torus with n darts up to orientation-preserving homeomorphism (darts are semi-edges in the particular case of ordinary maps).

Original entry on oeis.org

1, 6, 33, 285, 2115, 16533, 126501, 972441, 7451679, 57167260, 438644841, 3369276867, 25905339483, 199408447446, 1536728368389, 11856420991413, 91579955286519, 708146055343668, 5481535740059577, 42473608898628639
Offset: 3

Views

Author

Valery A. Liskovets, Apr 13 2006

Keywords

Crossrefs

Programs

  • Maple
    Phi2 := proc(l)
        local a,k ;
        a := 0 ;
        for k in numtheory[divisors](l) do
            a := a+numtheory[mobius](l/k)*k^2 ;
        end do:
        a ;
    end proc:
    h0 := proc(m)
        if type(m,integer) then
            binomial(2*m,m)*3*2^(m-1)/(m+1)/(m+2) ;
        else
            0;
        end if;
    end proc:
    h1 := proc(n)
        local a;
        a := 0 ;
        if n >= 3 and type(n,integer) then
            a := add(2^k*(4^(n-2-k)-1)*binomial(n+k,k),k=0..n-3) ;
        end if;
        a/3 ;
    end proc:
    A118094 := proc(n)
        binomial(n/2+2,4)*h0(n/2) ;
        %+2*binomial(n/3+2,3)*h0(n/3) ;
        %+6*binomial(n/4+2,3)*h0(n/4) ;
        a := %+12*binomial(n/6+2,3)*h0(n/6) ;
        for l in numtheory[divisors](n) do
            if modp(n,l) = 0 then
                a := a+h1(n/l)*Phi2(l) ;
            end if;
        end do:
        a/n ;
    end proc:
    seq(A118094(n),n=3..14) ; # R. J. Mathar, Dec 17 2014
  • Mathematica
    h0[n_] := If[Denominator[n] == 1, 3*2^(n-1)*Binomial[2*n, n]/((n+1)*(n+2)), 0]; h1[n_] := Sum[(4^(n-2-k)-1)*Binomial[n+k, k]*2^k, {k, 0, n-3}]/3; phi2[n_] := Sum[MoebiusMu[n/d]*d^2, {d, Divisors[n]}]; a[n_] := (Binomial[n/2+2, 4]*h0[n/2] +  2*Binomial[n/3+2, 3]*h0[n/3]+6*Binomial[n/4+2, 3]*h0[n/4] + 12*Binomial[n/6+2, 3]*h0[n/6] + Sum[ phi2[d]*h1[n/d], {d, Divisors[n]}])/n; Table[a[n], {n, 3, 22}] (* Jean-François Alcover, Dec 18 2014, translated from PARI *)
  • PARI
    h0(n) = if(denominator(n)==1, 3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2)), 0);
    h1(n) = sum(k=0, n-3, (4^(n-2-k)-1)*binomial(n+k, k)<Michel Marcus, Dec 11 2014 ; corrected by Charles R Greathouse IV, Dec 17 2014