cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118180 Triangle T(n, k) = 3^(k*(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 9, 9, 1, 1, 27, 81, 27, 1, 1, 81, 729, 729, 81, 1, 1, 243, 6561, 19683, 6561, 243, 1, 1, 729, 59049, 531441, 531441, 59049, 729, 1, 1, 2187, 531441, 14348907, 43046721, 14348907, 531441, 2187, 1, 1, 6561, 4782969, 387420489, 3486784401, 3486784401, 387420489, 4782969, 6561, 1
Offset: 0

Views

Author

Paul D. Hanna, Apr 15 2006

Keywords

Comments

For any column vector C, the matrix product of T*C transforms the g.f. of C: Sum_{n>=0} c(n)*x^n into the g.f.: Sum_{n>=0} c(n)*x^n/(1-3^n*x).

Examples

			A(x,y) = 1/(1-xy) + x/(1-3xy) + x^2/(1-9xy) + x^3/(1-27xy) + ...
Triangle begins:
  1;
  1,    1;
  1,    3,      1;
  1,    9,      9,        1;
  1,   27,     81,       27,        1;
  1,   81,    729,      729,       81,        1;
  1,  243,   6561,    19683,     6561,      243,      1;
  1,  729,  59049,   531441,   531441,    59049,    729,    1;
  1, 2187, 531441, 14348907, 43046721, 14348907, 531441, 2187, 1; ...
The matrix inverse T^-1 starts:
      1;
     -1,     1;
      2,    -3,     1;
    -10,    18,    -9,    1;
    134,  -270,   162,  -27,   1;
  -4942, 10854, -7290, 1458, -81, 1; ...
where [T^-1](n,k) = A118183(n-k)*(3^k)^(n-k).
		

Crossrefs

Cf. A118181 (row sums), A118182 (antidiagonal sums), A118183, A118184.
Cf. A117401 = ConvOffsStoT transform of 2^n.
Cf. A117401 (m=0), this sequence (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15).

Programs

  • Magma
    A118180:= func< n, k, m | (m+2)^(k*(n-k)) >;
    [A118180(n, k, 1): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
    
  • Maple
    seq(seq( (3^k)^(n-k), k=0..n), n=0..12);
  • Mathematica
    T[n_, k_, m_]:= (m+2)^(k*(n-k)); Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 28 2021 *)
  • PARI
    T(n,k) = if(k<0 || k>n, 0, 3^(k*(n-k)));
    
  • Sage
    def A118180(n, k, m): return (m+2)^(k*(n-k))
    flatten([[A118180(n, k, 1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021

Formula

G.f.: A(x,y) = Sum_{n>=0} x^n/(1-3^n*x*y). G.f. satisfies: A(x,y) = 1/(1-x*y) + x*A(x,3*y).
Equals ConvOffsStoT transform of the 3^n series: (1, 3, 9, 27, ...); e.g., ConvOffs transform of (1, 3, 9, 27) = (1, 27, 81, 27, 1). - Gary W. Adamson, Apr 21 2008
T(n,k) = (1/n)*( 3^(n-k)*k*T(n-1,k-1) + 3^k*(n-k)*T(n-1,k) ), where T(i,j)=0 if j>i. - Tom Edgar, Feb 20 2014
T(n, k, m) = (m+2)^(k*(n-k)) with m = 1. - G. C. Greubel, Jun 28 2021