A118180 Triangle T(n, k) = 3^(k*(n-k)), read by rows.
1, 1, 1, 1, 3, 1, 1, 9, 9, 1, 1, 27, 81, 27, 1, 1, 81, 729, 729, 81, 1, 1, 243, 6561, 19683, 6561, 243, 1, 1, 729, 59049, 531441, 531441, 59049, 729, 1, 1, 2187, 531441, 14348907, 43046721, 14348907, 531441, 2187, 1, 1, 6561, 4782969, 387420489, 3486784401, 3486784401, 387420489, 4782969, 6561, 1
Offset: 0
Examples
A(x,y) = 1/(1-xy) + x/(1-3xy) + x^2/(1-9xy) + x^3/(1-27xy) + ... Triangle begins: 1; 1, 1; 1, 3, 1; 1, 9, 9, 1; 1, 27, 81, 27, 1; 1, 81, 729, 729, 81, 1; 1, 243, 6561, 19683, 6561, 243, 1; 1, 729, 59049, 531441, 531441, 59049, 729, 1; 1, 2187, 531441, 14348907, 43046721, 14348907, 531441, 2187, 1; ... The matrix inverse T^-1 starts: 1; -1, 1; 2, -3, 1; -10, 18, -9, 1; 134, -270, 162, -27, 1; -4942, 10854, -7290, 1458, -81, 1; ... where [T^-1](n,k) = A118183(n-k)*(3^k)^(n-k).
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
A118180:= func< n, k, m | (m+2)^(k*(n-k)) >; [A118180(n, k, 1): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
-
Maple
seq(seq( (3^k)^(n-k), k=0..n), n=0..12);
-
Mathematica
T[n_, k_, m_]:= (m+2)^(k*(n-k)); Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 28 2021 *)
-
PARI
T(n,k) = if(k<0 || k>n, 0, 3^(k*(n-k)));
-
Sage
def A118180(n, k, m): return (m+2)^(k*(n-k)) flatten([[A118180(n, k, 1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021
Formula
G.f.: A(x,y) = Sum_{n>=0} x^n/(1-3^n*x*y). G.f. satisfies: A(x,y) = 1/(1-x*y) + x*A(x,3*y).
Equals ConvOffsStoT transform of the 3^n series: (1, 3, 9, 27, ...); e.g., ConvOffs transform of (1, 3, 9, 27) = (1, 27, 81, 27, 1). - Gary W. Adamson, Apr 21 2008
T(n,k) = (1/n)*( 3^(n-k)*k*T(n-1,k-1) + 3^k*(n-k)*T(n-1,k) ), where T(i,j)=0 if j>i. - Tom Edgar, Feb 20 2014
T(n, k, m) = (m+2)^(k*(n-k)) with m = 1. - G. C. Greubel, Jun 28 2021
Comments