A118183
Column 0 of the matrix inverse of triangle A118180.
Original entry on oeis.org
1, -1, 2, -10, 134, -4942, 505682, -142838074, 108933186230, -210663798566302, 812745803173573538, 6022271614633142122646, -2489044042602910169970590746, 996768343710992528631250678460690, -928936693384587466168289179772677376782
Offset: 0
Recurrence at n=4:
0 = a(0)*(3^0)^4 +a(1)*(3^1)^3 +a(2)*(3^2)^2 +a(3)*(3^3)^1 +a(4)*(3^4)^0
= 1*(3^0) - 1*(3^3) + 2*(3^4) - 10*(3^3) + 134*(3^0).
The g.f. is illustrated by:
1 = 1/(1-x) -1*x/(1-3*x) +2*x^2/(1-9*x) -10*x^3/(1-27*x) +134*x^4/(1-81*x)
- 4942*x^5/(1-243*x) +505682*x^6/(1-729*x) -142838074*x^7/(1-2187*x) +...
-
a[n_]:= a[n]= If[n<2, (-1)^n, -Sum[3^(j*(n-j))*a[j], {j,0,n-1}]];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jun 29 2021 *)
-
{a(n)=local(T=matrix(n+1,n+1,r,c,if(r>=c,(3^(c-1))^(r-c)))); return((T^-1)[n+1,1])}
-
@CachedFunction
def a(n): return (-1)^n if (n<2) else -sum(3^(j*(n-j))*a(j) for j in (0..n-1))
[a(n) for n in (0..30)] # G. C. Greubel, Jun 29 2021
A118184
Column 0 of the matrix log of triangle A118180, after term in row n is multiplied by n: a(n) = n*[log(A118180)](n,0), where A118180(n,k) = 3^(k*(n-k)).
Original entry on oeis.org
0, 1, -1, 3, -23, 329, 18231, -22030373, 34718491601, -130548608723439, 1300095260497408879, -35497483240662990289357, 2687397326811421691366217657, -562747611676887059779727492799911, 320110532506391993959111359699070808231
Offset: 0
Column 0 of log(A118180) = [0, 1, -1/2, 3/3, -23/4, 329/5, 18231/6, ...].
The g.f. is illustrated by:
x/(1-x)^2 = x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + ...
= x/(1-3*x) - x^2/(1-9*x) + 3*x^3/(1-27*x) - 23*x^4/(1-81*x) + 329*x^5/(1-243*x) + 18231*x^6/(1-729*x) - 22030373*x^7/(1-2187*x) + ...
-
A118183[n_]:= A118183[n]= If[n<2, (-1)^n, -Sum[3^(j*(n-j))*A118183[j], {j,0,n-1}]];
a[n_]:= a[n]= -Sum[3^(j*(n-j))*j*A118183[j], {j, 0, n}];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jun 29 2021 *)
-
{a(n)=local(T=matrix(n+1,n+1,r,c,if(r>=c,(3^(c-1))^(r-c))), L=sum(m=1,#T,-(T^0-T)^m/m));return(n*L[n+1,1])}
-
@CachedFunction
def A118183(n): return (-1)^n if (n<2) else -sum(3^(j*(n-j))*A118183(j) for j in (0..n-1))
def a(n): return (-1)*sum( 3^(j*(n-j))*j*A118183(j) for j in (0..n))
[a(n) for n in (0..30)] # G. C. Greubel, Jun 29 2021
A118181
Row sums of triangle A118180: a(n) = Sum_{k=0..n} (3^k)^(n-k) for n>=0.
Original entry on oeis.org
1, 2, 5, 20, 137, 1622, 33293, 1182440, 72811793, 7757988842, 1433154521621, 458101483131260, 253879024041595289, 243453910296759945662, 404765167247068325944349, 1164432505878183620543030480
Offset: 0
A(x) = 1/(1-x) + x/(1-3x) + x^2/(1-9x) + x^3/(1-27x) + ...
= 1 + 2*x + 5*x^2 + 20*x^3 + 137*x^4 + 1622*x^5 + 33293*x^6 +...
-
[(&+[3^(k*(n-k)): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jun 29 2021
-
seq( add(3^(k*(n-k)), k=0..n), n=0..30); # modified by G. C. Greubel, Jun 29 2021
-
Table[Sum[3^(k*(n-k)), {k,0,n}], {n,0,30}] (* G. C. Greubel, Jun 29 2021 *)
-
a(n)=sum(k=0, n, (3^k)^(n-k) );
-
[sum(3^(k*(n-k)) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 29 2021
A118182
Antidiagonal sums of triangle A118180: a(n) = Sum_{k=0..[n/2]} (3^k)^(n-2*k) for n>=0.
Original entry on oeis.org
1, 1, 2, 4, 11, 37, 164, 1000, 8021, 81001, 1076006, 19683244, 473632031, 14349084877, 571833704648, 31381448626000, 2265367321680041, 205893684435186001, 24615565942378859210, 4052605390737766057684
Offset: 0
A(x) = 1/(1-x^2) + x/(1-3x^2) + x^2/(1-9x^2) + x^3/(1-27x^2) +...
= 1 + x + 2*x^2 + 4*x^3 + 11*x^4 + 37*x^5 + 164*x^6 + 1000*x^7 +...
-
[(&+[3^(k*(n-2*k)): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Jun 29 2021
-
Table[Sum[3^(k*(n-2*k)), {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Jun 29 2021 *)
-
a(n)=sum(k=0, n\2, (3^k)^(n-2*k) );
-
[sum(3^(k*(n-2*k)) for k in (0..n//2)) for n in (0..30)] # G. C. Greubel, Jun 29 2021
A117401
Triangle T(n,k) = 2^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 16, 8, 1, 1, 16, 64, 64, 16, 1, 1, 32, 256, 512, 256, 32, 1, 1, 64, 1024, 4096, 4096, 1024, 64, 1, 1, 128, 4096, 32768, 65536, 32768, 4096, 128, 1, 1, 256, 16384, 262144, 1048576, 1048576, 262144, 16384, 256, 1
Offset: 0
A(x,y) = 1/(1-xy) + x/(1-2xy) + x^2/(1-4xy) + x^3/(1-8xy) + ...
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 8, 16, 8, 1;
1, 16, 64, 64, 16, 1;
1, 32, 256, 512, 256, 32, 1;
1, 64, 1024, 4096, 4096, 1024, 64, 1;
1, 128, 4096, 32768, 65536, 32768, 4096, 128, 1;
1, 256, 16384, 262144, 1048576, 1048576, 262144, 16384, 256, 1;
-
A117401:= func< n, k, m | (m+2)^(k*(n-k)) >;
[A117401(n, k, 0): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
-
Table[2^((n-k)k),{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Jan 09 2017 *)
-
T(n,k)=if(n
-
def A117401(n, k, m): return (m+2)^(k*(n-k))
flatten([[A117401(n, k, 0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021
A118185
Triangle T(n,k) = 4^(k*(n-k)) for n>=k>=0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 16, 16, 1, 1, 64, 256, 64, 1, 1, 256, 4096, 4096, 256, 1, 1, 1024, 65536, 262144, 65536, 1024, 1, 1, 4096, 1048576, 16777216, 16777216, 1048576, 4096, 1, 1, 16384, 16777216, 1073741824, 4294967296, 1073741824, 16777216, 16384, 1
Offset: 0
A(x,y) = 1/(1-xy) + x/(1-4xy) + x^2/(1-16xy) + x^3/(1-64xy) + ...
Triangle begins:
1;
1, 1;
1, 4, 1;
1, 16, 16, 1;
1, 64, 256, 64, 1;
1, 256, 4096, 4096, 256, 1;
1, 1024, 65536, 262144, 65536, 1024, 1;
1, 4096, 1048576, 16777216, 16777216, 1048576, 4096, 1; ...
The matrix inverse T^-1 starts:
1;
-1, 1;
3, -4, 1;
-33, 48, -16, 1;
1407, -2112, 768, -64, 1;
-237057, 360192, -135168, 12288, -256, 1; ...
where [T^-1](n,k) = A118188(n-k)*4^(k*(n-k)).
-
[4^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 29 2021
-
Table[4^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 29 2021 *)
-
T(n, k)=if(n
-
flatten([[4^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 29 2021
A118190
Triangle T(n,k) = 5^(k*(n-k)) for n >= k >= 0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 25, 25, 1, 1, 125, 625, 125, 1, 1, 625, 15625, 15625, 625, 1, 1, 3125, 390625, 1953125, 390625, 3125, 1, 1, 15625, 9765625, 244140625, 244140625, 9765625, 15625, 1, 1, 78125, 244140625, 30517578125, 152587890625, 30517578125, 244140625, 78125, 1
Offset: 0
A(x,y) = 1/(1-x*y) + x/(1-5*x*y) + x^2/(1-25*x*y) + x^3/(1-125*x*y) + ...
Triangle begins:
1;
1, 1;
1, 5, 1;
1, 25, 25, 1;
1, 125, 625, 125, 1;
1, 625, 15625, 15625, 625, 1;
1, 3125, 390625, 1953125, 390625, 3125, 1;
1, 15625, 9765625, 244140625, 244140625, 9765625, 15625, 1; ...
The matrix inverse T^-1 starts:
1;
-1, 1;
4, -5, 1;
-76, 100, -25, 1;
7124, -9500, 2500, -125, 1;
-3326876, 4452500, -1187500, 62500, -625, 1; ...
where [T^-1](n,k) = A118193(n-k)*(5^k)^(n-k).
-
[5^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 29 2021
-
With[{m=3}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 29 2021 *)
-
T(n, k)=if(n
-
flatten([[5^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 29 2021
A156581
Triangle T(n, k, m) = (m+2)^(k*(n-k)) with m = 15, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 17, 1, 1, 289, 289, 1, 1, 4913, 83521, 4913, 1, 1, 83521, 24137569, 24137569, 83521, 1, 1, 1419857, 6975757441, 118587876497, 6975757441, 1419857, 1, 1, 24137569, 2015993900449, 582622237229761, 582622237229761, 2015993900449, 24137569, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 17, 1;
1, 289, 289, 1;
1, 4913, 83521, 4913, 1;
1, 83521, 24137569, 24137569, 83521, 1;
1, 1419857, 6975757441, 118587876497, 6975757441, 1419857, 1;
-
A156581:= func< n,k,m | (m+2)^(k*(n-k)) >;
[A156581(n,k,15): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
-
(* First program *)
b[n_, k_]:= b[n, k]= If[k==0, n!, Product[Sum[Binomial[j-1, i]*(k+1)^i, {i, 0, j-1}], {j, n}]];
T[n_, k_, m_]:= T[n, k, m]= b[n, m]/(b[k, m]*b[n-k, m]);
Table[T[n, k, 15], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 28 2021 *)
(* Second program *)
T[n_, k_, m_]:= (m+2)^(k*(n-k)); Table[T[n,k,15], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 28 2021 *)
-
def A156581(n,k,m): return (m+2)^(k*(n-k))
flatten([[A156581(n,k,15) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021
A158116
Triangle T(n,k) = 6^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 36, 36, 1, 1, 216, 1296, 216, 1, 1, 1296, 46656, 46656, 1296, 1, 1, 7776, 1679616, 10077696, 1679616, 7776, 1, 1, 46656, 60466176, 2176782336, 2176782336, 60466176, 46656, 1, 1, 279936, 2176782336, 470184984576, 2821109907456, 470184984576, 2176782336, 279936, 1
Offset: 0
Triangle starts:
1;
1, 1;
1, 6, 1;
1, 36, 36, 1;
1, 216, 1296, 216, 1;
1, 1296, 46656, 46656, 1296, 1;
1, 7776, 1679616, 10077696, 1679616, 7776, 1;
1, 46656, 60466176, 2176782336, 2176782336, 60466176, 46656, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3), this sequence (m=4),
A176642 (m=6),
A158117 (m=8),
A176627 (m=10),
A176639 (m=13),
A156581 (m=15),
A176643 (m=19),
A176631 (m=20),
A176641 (m=26).
-
[6^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
With[{m=4}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
T(n,k) = 6^(k*(n-k));
for (n=0,11,for (k=0,n, print1(T(n,k),", "));print();); \\ Joerg Arndt, Feb 21 2014
-
flatten([[6^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
A158117
Triangle T(n, k) = 10^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 100, 100, 1, 1, 1000, 10000, 1000, 1, 1, 10000, 1000000, 1000000, 10000, 1, 1, 100000, 100000000, 1000000000, 100000000, 100000, 1, 1, 1000000, 10000000000, 1000000000000, 1000000000000, 10000000000, 1000000, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 10, 1;
1, 100, 100, 1;
1, 1000, 10000, 1000, 1;
1, 10000, 1000000, 1000000, 10000, 1;
1, 100000, 100000000, 1000000000, 100000000, 100000, 1;
1, 1000000, 10000000000, 1000000000000, 1000000000000, 10000000000, 1000000, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4),
A176642 (m=6), this sequence (m=8),
A176627 (m=10),
A176639 (m=13),
A156581 (m=15),
A176643 (m=19),
A176631 (m=20),
A176641 (m=26).
-
[10^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
(* First program *)
T[n_, k_, q_]= Binomial[q+2,2](k*(n-k));
Table[T[n,k,3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jun 30 2021 *)
(* Second program *)
With[{m=8}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
flatten([[10^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
Showing 1-10 of 19 results.
Comments