A118186
Row sums of triangle A118185: a(n) = Sum_{k=0..n} 4^(k*(n-k)) for n>=0.
Original entry on oeis.org
1, 2, 6, 34, 386, 8706, 395266, 35659778, 6476038146, 2336999211010, 1697654543745026, 2450521284684021762, 7120479243447937531906, 41112924905741324849774594, 477847273163370530909175414786
Offset: 0
A(x) = 1/(1-x) + x/(1-4x) + x^2/(1-16x) + x^3/(1-64x) + ...
= 1 + 2*x + 6*x^2 + 34*x^3 + 386*x^4 + 8706*x^5 + ...
From _Paul D. Hanna_, Oct 14 2009: (Start)
Another g.f.: (1 + x/2^1 + x^2/2^4 + x^3/2^9 + x^4/2^16 + ...)^2
= 1 + 2*x/2^1 + 6*x^2/2^4 + 34*x^3/2^9 + 386*x^4/2^16 + ... (End)
-
[(&+[4^(k*(n-k)): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jun 29 2021
-
Table[Sum[4^(k*(n-k)), {k,0,n}], {n,0,30}] (* G. C. Greubel, Jun 29 2021 *)
-
a(n)=sum(k=0, n, (4^k)^(n-k) );
-
{a(n)=2^(n^2)*polcoeff(sum(m=0,n,x^m/2^(m^2)+x*O(x^n))^2,n)} \\ Paul D. Hanna, Oct 14 2009
-
[sum(4^(k*(n-k)) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 29 2021
A118187
Antidiagonal sums of triangle A118185: a(n) = Sum_{k=0..[n/2]} 4^(k*(n-2*k)) for n>=0.
Original entry on oeis.org
1, 1, 2, 5, 18, 81, 514, 5185, 73730, 1327361, 33685506, 1359217665, 77311508482, 5567355555841, 565149010231298, 91215553426898945, 20753150033413537794, 5977902509385249259521, 2427296516310194305630210
Offset: 0
A(x) = 1/(1-x^2) + x/(1-4*x^2) + x^2/(1-16*x^2) + x^3/(1-64*x^2) + ...
= 1 + x + 2*x^2 + 5*x^3 + 18*x^4 + 81*x^5 + 514*x^6 + ...
-
[(&+[4^(k*(n-2*k)): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Jun 29 2021
-
Table[Sum[4^(k*(n-2*k)), {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Jun 29 2021 *)
-
a(n)=sum(k=0, n\2, (4^k)^(n-2*k) )
-
[sum(4^(k*(n-2*k)) for k in (0..n//2)) for n in (0..30)] # G. C. Greubel, Jun 29 2021
A118188
Column 0 of the matrix inverse of triangle A118185(n,k) = (4^k)^(n-k).
Original entry on oeis.org
1, -1, 3, -33, 1407, -237057, 158992383, -425715556353, 4556004503093247, -194971932801554579457, 33370662957719457037287423, -22845215336421444625717664940033, 62557106610069521429900219032249827327, -685195337175488637158242110253091749621661697
Offset: 0
Recurrence at n=4:
0 = a(0)*(4^0)^4 +a(1)*(4^1)^3 +a(2)*(4^2)^2 +a(3)*(4^3)^1 +a(4)*(4^4)^0
= 1*(4^0) - 1*(4^3) + 3*(4^4) - 33*(4^3) + 1407*(4^0).
The g.f. is illustrated by:
1 = 1/(1-x) - 1*x/(1-4*x) + 3*x^2/(1-16*x) - 33*x^3/(1-64*x) +
1407*x^4/(1-256*x) - 237057*x^5/(1-1024*x) + 158992383*x^6/(1-4096*x) +...
-
a[n_]:= a[n]= If[n<2, (-1)^n, -Sum[4^(j*(n-j))*a[j], {j, 0, n-1}]];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jun 29 2021 *)
-
{a(n)=local(T=matrix(n+1,n+1,r,c,if(r>=c,(4^(c-1))^(r-c)))); return((T^-1)[n+1,1])}
-
@CachedFunction
def a(n): return (-1)^n if (n<2) else -sum(4^(j*(n-j))*a(j) for j in (0..n-1))
[a(n) for n in (0..30)] # G. C. Greubel, Jun 29 2021
A118189
Column 0 of the matrix log of triangle A118185, after term in row n is multiplied by n: a(n) = n*[log(A118185)](n,0), where A118185(n,k) = 4^(k*(n-k)).
Original entry on oeis.org
0, 1, -2, 19, -764, 125701, -83499002, 222705979399, -2379643407695864, 101770765968904486921, -17414214749792087566712822, 11920352399707142353576549941259, -32640155138015817553201240150152052724, 357505372216293786145503061380504161718632461
Offset: 0
Column 0 of log(A118185) = [0, 1, -2/2, 19/3, -764/4, 125701/5, ...].
The g.f. is illustrated by:
x/(1-x)^2 = x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + ...
= x/(1-4*x) - 2*x^2/(1-16*x) + 19*x^3/(1-64*x) - 764*x^4/(1-256*x) + 125701*x^5/(1-1024*x) - 83499002*x^6/(1-4096*x) + 222705979399*x^7/(1-16384*x) + ...
From _Paul D. Hanna_, Oct 14 2009: (Start)
Illustrate the logarithmic g.f. by:
L(x) = x/2^1 - 2*x^2/(2*2^4) + 19*x^3/(3*2^9) - 764*x^4/(4*2^16) +- ...
where exp(L(x)) = 1 + x/2^1 + x^2/2^4 + x^3/2^9 + x^4/2^16 + ... (End)
-
A118188[n_]:= A118188[n]= If[n<2, (-1)^n, -Sum[4^(j*(n-j))*A118188[j], {j,0,n-1}]];
a[n_]:= a[n]= -Sum[4^(j*(n-j))*j*A118188[j], {j, 0, n}];
Table[a[n], {n, 0, 15}] (* G. C. Greubel, Jun 29 2021 *)
-
{a(n)=local(T=matrix(n+1,n+1,r,c,if(r>=c,(4^(c-1))^(r-c))), L=sum(m=1,#T,-(T^0-T)^m/m));return(n*L[n+1,1])}
-
{a(n)=n*2^(n^2)*polcoeff(log(sum(m=0,n,x^m/2^(m^2))+x*O(x^n)),n)} \\ Paul D. Hanna, Oct 14 2009
-
@CachedFunction
def A118188(n): return (-1)^n if (n<2) else -sum(4^(j*(n-j))*A118188(j) for j in (0..n-1))
def a(n): return (-1)*sum(4^(j*(n-j))*j*A118188(j) for j in (0..n))
[a(n) for n in (0..30)] # G. C. Greubel, Jun 29 2021
A117401
Triangle T(n,k) = 2^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 16, 8, 1, 1, 16, 64, 64, 16, 1, 1, 32, 256, 512, 256, 32, 1, 1, 64, 1024, 4096, 4096, 1024, 64, 1, 1, 128, 4096, 32768, 65536, 32768, 4096, 128, 1, 1, 256, 16384, 262144, 1048576, 1048576, 262144, 16384, 256, 1
Offset: 0
A(x,y) = 1/(1-xy) + x/(1-2xy) + x^2/(1-4xy) + x^3/(1-8xy) + ...
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 8, 16, 8, 1;
1, 16, 64, 64, 16, 1;
1, 32, 256, 512, 256, 32, 1;
1, 64, 1024, 4096, 4096, 1024, 64, 1;
1, 128, 4096, 32768, 65536, 32768, 4096, 128, 1;
1, 256, 16384, 262144, 1048576, 1048576, 262144, 16384, 256, 1;
-
A117401:= func< n, k, m | (m+2)^(k*(n-k)) >;
[A117401(n, k, 0): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
-
Table[2^((n-k)k),{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Jan 09 2017 *)
-
T(n,k)=if(n
-
def A117401(n, k, m): return (m+2)^(k*(n-k))
flatten([[A117401(n, k, 0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021
A118180
Triangle T(n, k) = 3^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 9, 9, 1, 1, 27, 81, 27, 1, 1, 81, 729, 729, 81, 1, 1, 243, 6561, 19683, 6561, 243, 1, 1, 729, 59049, 531441, 531441, 59049, 729, 1, 1, 2187, 531441, 14348907, 43046721, 14348907, 531441, 2187, 1, 1, 6561, 4782969, 387420489, 3486784401, 3486784401, 387420489, 4782969, 6561, 1
Offset: 0
A(x,y) = 1/(1-xy) + x/(1-3xy) + x^2/(1-9xy) + x^3/(1-27xy) + ...
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 9, 9, 1;
1, 27, 81, 27, 1;
1, 81, 729, 729, 81, 1;
1, 243, 6561, 19683, 6561, 243, 1;
1, 729, 59049, 531441, 531441, 59049, 729, 1;
1, 2187, 531441, 14348907, 43046721, 14348907, 531441, 2187, 1; ...
The matrix inverse T^-1 starts:
1;
-1, 1;
2, -3, 1;
-10, 18, -9, 1;
134, -270, 162, -27, 1;
-4942, 10854, -7290, 1458, -81, 1; ...
where [T^-1](n,k) = A118183(n-k)*(3^k)^(n-k).
Cf.
A117401 = ConvOffsStoT transform of 2^n.
-
A118180:= func< n, k, m | (m+2)^(k*(n-k)) >;
[A118180(n, k, 1): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
-
seq(seq( (3^k)^(n-k), k=0..n), n=0..12);
-
T[n_, k_, m_]:= (m+2)^(k*(n-k)); Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 28 2021 *)
-
T(n,k) = if(k<0 || k>n, 0, 3^(k*(n-k)));
-
def A118180(n, k, m): return (m+2)^(k*(n-k))
flatten([[A118180(n, k, 1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021
A118190
Triangle T(n,k) = 5^(k*(n-k)) for n >= k >= 0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 25, 25, 1, 1, 125, 625, 125, 1, 1, 625, 15625, 15625, 625, 1, 1, 3125, 390625, 1953125, 390625, 3125, 1, 1, 15625, 9765625, 244140625, 244140625, 9765625, 15625, 1, 1, 78125, 244140625, 30517578125, 152587890625, 30517578125, 244140625, 78125, 1
Offset: 0
A(x,y) = 1/(1-x*y) + x/(1-5*x*y) + x^2/(1-25*x*y) + x^3/(1-125*x*y) + ...
Triangle begins:
1;
1, 1;
1, 5, 1;
1, 25, 25, 1;
1, 125, 625, 125, 1;
1, 625, 15625, 15625, 625, 1;
1, 3125, 390625, 1953125, 390625, 3125, 1;
1, 15625, 9765625, 244140625, 244140625, 9765625, 15625, 1; ...
The matrix inverse T^-1 starts:
1;
-1, 1;
4, -5, 1;
-76, 100, -25, 1;
7124, -9500, 2500, -125, 1;
-3326876, 4452500, -1187500, 62500, -625, 1; ...
where [T^-1](n,k) = A118193(n-k)*(5^k)^(n-k).
-
[5^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 29 2021
-
With[{m=3}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 29 2021 *)
-
T(n, k)=if(n
-
flatten([[5^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 29 2021
A156581
Triangle T(n, k, m) = (m+2)^(k*(n-k)) with m = 15, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 17, 1, 1, 289, 289, 1, 1, 4913, 83521, 4913, 1, 1, 83521, 24137569, 24137569, 83521, 1, 1, 1419857, 6975757441, 118587876497, 6975757441, 1419857, 1, 1, 24137569, 2015993900449, 582622237229761, 582622237229761, 2015993900449, 24137569, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 17, 1;
1, 289, 289, 1;
1, 4913, 83521, 4913, 1;
1, 83521, 24137569, 24137569, 83521, 1;
1, 1419857, 6975757441, 118587876497, 6975757441, 1419857, 1;
-
A156581:= func< n,k,m | (m+2)^(k*(n-k)) >;
[A156581(n,k,15): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
-
(* First program *)
b[n_, k_]:= b[n, k]= If[k==0, n!, Product[Sum[Binomial[j-1, i]*(k+1)^i, {i, 0, j-1}], {j, n}]];
T[n_, k_, m_]:= T[n, k, m]= b[n, m]/(b[k, m]*b[n-k, m]);
Table[T[n, k, 15], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 28 2021 *)
(* Second program *)
T[n_, k_, m_]:= (m+2)^(k*(n-k)); Table[T[n,k,15], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 28 2021 *)
-
def A156581(n,k,m): return (m+2)^(k*(n-k))
flatten([[A156581(n,k,15) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021
A158116
Triangle T(n,k) = 6^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 36, 36, 1, 1, 216, 1296, 216, 1, 1, 1296, 46656, 46656, 1296, 1, 1, 7776, 1679616, 10077696, 1679616, 7776, 1, 1, 46656, 60466176, 2176782336, 2176782336, 60466176, 46656, 1, 1, 279936, 2176782336, 470184984576, 2821109907456, 470184984576, 2176782336, 279936, 1
Offset: 0
Triangle starts:
1;
1, 1;
1, 6, 1;
1, 36, 36, 1;
1, 216, 1296, 216, 1;
1, 1296, 46656, 46656, 1296, 1;
1, 7776, 1679616, 10077696, 1679616, 7776, 1;
1, 46656, 60466176, 2176782336, 2176782336, 60466176, 46656, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3), this sequence (m=4),
A176642 (m=6),
A158117 (m=8),
A176627 (m=10),
A176639 (m=13),
A156581 (m=15),
A176643 (m=19),
A176631 (m=20),
A176641 (m=26).
-
[6^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
With[{m=4}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
T(n,k) = 6^(k*(n-k));
for (n=0,11,for (k=0,n, print1(T(n,k),", "));print();); \\ Joerg Arndt, Feb 21 2014
-
flatten([[6^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
A158117
Triangle T(n, k) = 10^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 100, 100, 1, 1, 1000, 10000, 1000, 1, 1, 10000, 1000000, 1000000, 10000, 1, 1, 100000, 100000000, 1000000000, 100000000, 100000, 1, 1, 1000000, 10000000000, 1000000000000, 1000000000000, 10000000000, 1000000, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 10, 1;
1, 100, 100, 1;
1, 1000, 10000, 1000, 1;
1, 10000, 1000000, 1000000, 10000, 1;
1, 100000, 100000000, 1000000000, 100000000, 100000, 1;
1, 1000000, 10000000000, 1000000000000, 1000000000000, 10000000000, 1000000, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4),
A176642 (m=6), this sequence (m=8),
A176627 (m=10),
A176639 (m=13),
A156581 (m=15),
A176643 (m=19),
A176631 (m=20),
A176641 (m=26).
-
[10^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
(* First program *)
T[n_, k_, q_]= Binomial[q+2,2](k*(n-k));
Table[T[n,k,3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jun 30 2021 *)
(* Second program *)
With[{m=8}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
flatten([[10^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
Showing 1-10 of 19 results.
Comments