cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A118185 Triangle T(n,k) = 4^(k*(n-k)) for n>=k>=0, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 16, 16, 1, 1, 64, 256, 64, 1, 1, 256, 4096, 4096, 256, 1, 1, 1024, 65536, 262144, 65536, 1024, 1, 1, 4096, 1048576, 16777216, 16777216, 1048576, 4096, 1, 1, 16384, 16777216, 1073741824, 4294967296, 1073741824, 16777216, 16384, 1
Offset: 0

Views

Author

Paul D. Hanna, Apr 15 2006

Keywords

Comments

For any column vector C, the matrix product of T*C transforms the g.f. of C: Sum_{n>=0} c(n)*x^n into the g.f.: Sum_{n>=0} c(n)*x^n/(1-4^n*x).
Matrix power T^m satisfies: [T^m](n,k) = [T^m](n-k,0)*T(n,k) for all m and so the triangle has an invariant character. For example, the matrix inverse is defined by [T^-1](n,k) = A118188(n-k)*T(n,k); also, the matrix log is given by [log(T)](n,k) = A118189(n-k)*T(n,k).

Examples

			A(x,y) = 1/(1-xy) + x/(1-4xy) + x^2/(1-16xy) + x^3/(1-64xy) + ...
Triangle begins:
  1;
  1,    1;
  1,    4,       1;
  1,   16,      16,        1;
  1,   64,     256,       64,        1;
  1,  256,    4096,     4096,      256,       1;
  1, 1024,   65536,   262144,    65536,    1024,    1;
  1, 4096, 1048576, 16777216, 16777216, 1048576, 4096, 1; ...
The matrix inverse T^-1 starts:
        1;
       -1,      1;
        3,     -4,       1;
      -33,     48,     -16,     1;
     1407,  -2112,     768,   -64,    1;
  -237057, 360192, -135168, 12288, -256, 1; ...
where [T^-1](n,k) = A118188(n-k)*4^(k*(n-k)).
		

Crossrefs

Cf. A118186 (row sums), A118187 (antidiagonal sums), A118188, A118189.
Cf. A117401 (m=0), A118180 (m=1), this sequence (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15).
T(2n,n) gives A060757.

Programs

  • Magma
    [4^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 29 2021
    
  • Mathematica
    Table[4^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 29 2021 *)
  • PARI
    T(n, k)=if(n
    				
  • Sage
    flatten([[4^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 29 2021

Formula

G.f.: A(x,y) = Sum_{n>=0} x^n/(1-4^n*x*y).
G.f. satisfies: A(x,y) = 1/(1-x*y) + x*A(x,4*y).
T(n,k) = (1/n)*( 4^(n-k)*k*T(n-1,k-1) + 4^k*(n-k)*T(n-1,k) ), where T(i,j)=0 if j>i. - Tom Edgar, Feb 20 2014
T(n, k, m) = (m+2)^(k*(n-k)) with m = 2. - G. C. Greubel, Jun 29 2021

A118189 Column 0 of the matrix log of triangle A118185, after term in row n is multiplied by n: a(n) = n*[log(A118185)](n,0), where A118185(n,k) = 4^(k*(n-k)).

Original entry on oeis.org

0, 1, -2, 19, -764, 125701, -83499002, 222705979399, -2379643407695864, 101770765968904486921, -17414214749792087566712822, 11920352399707142353576549941259, -32640155138015817553201240150152052724, 357505372216293786145503061380504161718632461
Offset: 0

Views

Author

Paul D. Hanna, Apr 15 2006

Keywords

Comments

The entire matrix log of triangle A118185 is determined by column 0 (this sequence): [log(A118185)](n,k) = a(n-k)*4^(k*(n-k))/(n-k) for n > k >= 0.

Examples

			Column 0 of log(A118185) = [0, 1, -2/2, 19/3, -764/4, 125701/5, ...].
The g.f. is illustrated by:
x/(1-x)^2 = x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + ...
  = x/(1-4*x) - 2*x^2/(1-16*x) + 19*x^3/(1-64*x) - 764*x^4/(1-256*x) + 125701*x^5/(1-1024*x) - 83499002*x^6/(1-4096*x) + 222705979399*x^7/(1-16384*x) + ...
From _Paul D. Hanna_, Oct 14 2009: (Start)
Illustrate the logarithmic g.f. by:
L(x) = x/2^1 - 2*x^2/(2*2^4) + 19*x^3/(3*2^9) - 764*x^4/(4*2^16) +- ...
where exp(L(x)) = 1 + x/2^1 + x^2/2^4 + x^3/2^9 + x^4/2^16 + ... (End)
		

Crossrefs

Cf. A118185 (triangle), A118188.

Programs

  • Mathematica
    A118188[n_]:= A118188[n]= If[n<2, (-1)^n, -Sum[4^(j*(n-j))*A118188[j], {j,0,n-1}]];
    a[n_]:= a[n]= -Sum[4^(j*(n-j))*j*A118188[j], {j, 0, n}];
    Table[a[n], {n, 0, 15}] (* G. C. Greubel, Jun 29 2021 *)
  • PARI
    {a(n)=local(T=matrix(n+1,n+1,r,c,if(r>=c,(4^(c-1))^(r-c))), L=sum(m=1,#T,-(T^0-T)^m/m));return(n*L[n+1,1])}
    
  • PARI
    {a(n)=n*2^(n^2)*polcoeff(log(sum(m=0,n,x^m/2^(m^2))+x*O(x^n)),n)} \\ Paul D. Hanna, Oct 14 2009
    
  • Sage
    @CachedFunction
    def A118188(n): return (-1)^n if (n<2) else -sum(4^(j*(n-j))*A118188(j) for j in (0..n-1))
    def a(n): return (-1)*sum(4^(j*(n-j))*j*A118188(j) for j in (0..n))
    [a(n) for n in (0..30)] # G. C. Greubel, Jun 29 2021

Formula

G.f.: x/(1-x)^2 = Sum_{n>=0} a(n)*x^n/(1-4^n*x).
By using the inverse transformation: a(n) = Sum_{k=0..n} k*A118188(n-k)*4^(k*(n-k)) for n>=0.
a(2^n) is divisible by 2^n.
L.g.f.: Sum_{n>=1} a(n)*x^n/[n*2^(n^2)] = log( Sum_{n>=0} x^n/2^(n^2) ). - Paul D. Hanna, Oct 14 2009
Showing 1-2 of 2 results.