A118191
Row sums of triangle A118190: a(n) = Sum_{k=0..n} 5^(k*(n-k)) for n>=0.
Original entry on oeis.org
1, 2, 7, 52, 877, 32502, 2740627, 507843752, 214111484377, 198376465625002, 418186492923828127, 1937270172119160156252, 20419262349796295263671877, 472966350615029335022460937502, 24925857360591180741786959228515627
Offset: 0
A(x) = 1/(1-x) + x/(1-5*x) + x^2/(1-25*x) + x^3/(1-125*x) + ...
= 1 + 2*x + 7*x^2 + 52*x^3 + 877*x^4 + 32502*x^5 + ...
-
[(&+[5^(k*(n-k)): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jun 29 2021
-
Table[Sum[5^(k*(n-k)), {k,0,n}], {n,0,30}] (* G. C. Greubel, Jun 29 2021 *)
-
a(n)=sum(k=0, n, (5^k)^(n-k))
-
[sum(5^(k*(n-k)) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 29 2021
A118192
Antidiagonal sums of triangle A118190: a(n) = Sum_{k=0..floor(n/2)} 5^(k*(n-2*k)) for n>=0.
Original entry on oeis.org
1, 1, 2, 6, 27, 151, 1252, 18876, 421877, 11797501, 489062502, 36867190626, 4119892578127, 576049853531251, 119400024902343752, 45003894807128984376, 25145828723919677734377, 17579646409034759521875001
Offset: 0
A(x) = 1/(1-x^2) + x/(1-5*x^2) + x^2/(1-25*x^2) + x^3/(1-125*x^2) + ...
= 1 + x + 2*x^2 + 6*x^3 + 27*x^4 + 151*x^5 + ...
-
[(&+[5^(k*(n-2*k)): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Jun 29 2021
-
Table[Sum[5^(k*(n-2*k)), {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Jun 29 2021 *)
-
a(n)=sum(k=0, n\2, (5^k)^(n-2*k) )
-
[sum(5^(k*(n-2*k)) for k in (0..n//2)) for n in (0..30)] # G. C. Greubel, Jun 29 2021
A118193
Column 0 of the matrix inverse of triangle A118190(n,k) = 5^(k*(n-k)).
Original entry on oeis.org
1, -1, 4, -76, 7124, -3326876, 7760553124, -90490361296876, 5275336666748203124, -1537656615631182860546876, 2240970675863910673065189453124, -16329855533286908545970966339091796876, 594974481262862479448134839533519744970703124
Offset: 0
Recurrence at n=4: 0 = a(0)*(5^0)^4 +a(1)*(5^1)^3 +a(2)*(5^2)^2 +a(3)*(5^3)^1 +a(4)*(5^4)^0 = 1*(5^0) - 1*(5^3) + 4*(5^4) - 76*(5^3) + 7124*(5^0).
The g.f. is illustrated by: 1 = 1/(1-x) - 1*x/(1-5*x) + 4*x^2/(1-25*x) - 76*x^3/(1-125*x) + 7124*x^4/(1-625*x) - 3326876*x^5/(1-3125*x) + 7760553124*x^6/(1-15625*x) +...
-
a[n_]:= a[n]= If[n<2, (-1)^n, -Sum[5^(j*(n-j))*a[j], {j,0, n-1}]];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jun 29 2021 *)
-
{a(n)=local(T=matrix(n+1,n+1,r,c,if(r>=c,(5^(c-1))^(r-c)))); return((T^-1)[n+1,1])}
-
@CachedFunction
def a(n): return (-1)^n if (n<2) else -sum(5^(j*(n-j))*a(j) for j in (0..n-1))
[a(n) for n in (0..30)] # G. C. Greubel, Jun 29 2021
A118194
Column 0 of the matrix log of triangle A118190, after term in row n is multiplied by n: a(n) = n*[log(A118190)](n,0), where A118190(n,k) = 5^(k*(n-k)).
Original entry on oeis.org
0, 1, -3, 53, -4871, 2262505, -5269940619, 61424345593757, -3580474937256484367, 1043606492389898678125009, -1520932783784930699920673828115, 11082945991224258678496051788222656261, -403804307486446123171767495567989349951171863
Offset: 0
Column 0 of log(A118190) = [0, 1, -3/2, 53/3, -4871/4, ...].
The g.f. is illustrated by:
x/(1-x)^2 = x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + ...
= x/(1-5*x) -3*x^2/(1-25*x) +53*x^3/(1-125*x) -4871*x^4/(1-625*x) + 2262505*x^5/(1-3125*x) - 5269940619*x^6/(1-15625*x) + ...
-
A118193[n_]:= A118193[n]= If[n<2, (-1)^n, -Sum[5^(j*(n-j))*A118193[j], {j, 0, n-1}]];
a[n_]:= a[n]= -Sum[5^(j*(n-j))*j*A118193[j], {j, 0, n}];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jun 29 2021 *)
-
{a(n)=local(T=matrix(n+1,n+1,r,c,if(r>=c,(5^(c-1))^(r-c))), L=sum(m=1,#T,-(T^0-T)^m/m));return(n*L[n+1,1])}
-
@CachedFunction
def A118193(n): return (-1)^n if (n<2) else -sum(5^(j*(n-j))*A118193(j) for j in (0..n-1))
def a(n): return (-1)*sum(5^(j*(n-j))*j*A118193(j) for j in (0..n))
[a(n) for n in (0..30)] # G. C. Greubel, Jun 29 2021
A118195
Self-convolution square-root of A118191, where A118191 is column 0 of the matrix square of triangle A118190 with A118190(n,k) = (5^k)^(n-k).
Original entry on oeis.org
1, 1, 3, 23, 411, 15771, 1353045, 252512065, 106798723795, 99080638950595, 208993838938550873, 968425792397232696773, 10208662119796586878979989, 236472963735267887311598074949, 12462692176683507314938059670486683
Offset: 0
A(x) = 1 + x + 3*x^2 + 23*x^3 + 411*x^4 + 15771*x^5 + ...
A(x)^2 = 1 + 2*x + 7*x^2 + 52*x^3 + 877*x^4 + 32502*x^5 + ...
= 1/(1-x) + x/(1-5x) + x^2/(1-25x) + x^3/(1-125x) + ...
-
m:=30;
R:=PowerSeriesRing(Rationals(), m);
Coefficients(R!( Sqrt( (&+[x^j/(1-5^j*x): j in [0..m+2]]) ) )); // G. C. Greubel, Jun 30 2021
-
With[{m = 30}, CoefficientList[Series[Sqrt[Sum[x^j/(1 - 5^j*x), {j, 0, m + 2}]], {x, 0, m}], x]] (* G. C. Greubel, Jun 30 2021 *)
-
a(n)=polcoeff(sqrt(sum(k=0,n,sum(j=0, k, (5^j)^(k-j) )*x^k+x*O(x^n))),n)
-
m=30;
def A118195_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( sqrt(sum( x^j/(1-5^j*x) for j in (0..m+2))) ).list()
A118195_list(m) # G. C. Greubel, Jun 30 2021
A117401
Triangle T(n,k) = 2^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 16, 8, 1, 1, 16, 64, 64, 16, 1, 1, 32, 256, 512, 256, 32, 1, 1, 64, 1024, 4096, 4096, 1024, 64, 1, 1, 128, 4096, 32768, 65536, 32768, 4096, 128, 1, 1, 256, 16384, 262144, 1048576, 1048576, 262144, 16384, 256, 1
Offset: 0
A(x,y) = 1/(1-xy) + x/(1-2xy) + x^2/(1-4xy) + x^3/(1-8xy) + ...
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 8, 16, 8, 1;
1, 16, 64, 64, 16, 1;
1, 32, 256, 512, 256, 32, 1;
1, 64, 1024, 4096, 4096, 1024, 64, 1;
1, 128, 4096, 32768, 65536, 32768, 4096, 128, 1;
1, 256, 16384, 262144, 1048576, 1048576, 262144, 16384, 256, 1;
-
A117401:= func< n, k, m | (m+2)^(k*(n-k)) >;
[A117401(n, k, 0): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
-
Table[2^((n-k)k),{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Jan 09 2017 *)
-
T(n,k)=if(n
-
def A117401(n, k, m): return (m+2)^(k*(n-k))
flatten([[A117401(n, k, 0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021
A118180
Triangle T(n, k) = 3^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 9, 9, 1, 1, 27, 81, 27, 1, 1, 81, 729, 729, 81, 1, 1, 243, 6561, 19683, 6561, 243, 1, 1, 729, 59049, 531441, 531441, 59049, 729, 1, 1, 2187, 531441, 14348907, 43046721, 14348907, 531441, 2187, 1, 1, 6561, 4782969, 387420489, 3486784401, 3486784401, 387420489, 4782969, 6561, 1
Offset: 0
A(x,y) = 1/(1-xy) + x/(1-3xy) + x^2/(1-9xy) + x^3/(1-27xy) + ...
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 9, 9, 1;
1, 27, 81, 27, 1;
1, 81, 729, 729, 81, 1;
1, 243, 6561, 19683, 6561, 243, 1;
1, 729, 59049, 531441, 531441, 59049, 729, 1;
1, 2187, 531441, 14348907, 43046721, 14348907, 531441, 2187, 1; ...
The matrix inverse T^-1 starts:
1;
-1, 1;
2, -3, 1;
-10, 18, -9, 1;
134, -270, 162, -27, 1;
-4942, 10854, -7290, 1458, -81, 1; ...
where [T^-1](n,k) = A118183(n-k)*(3^k)^(n-k).
Cf.
A117401 = ConvOffsStoT transform of 2^n.
-
A118180:= func< n, k, m | (m+2)^(k*(n-k)) >;
[A118180(n, k, 1): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
-
seq(seq( (3^k)^(n-k), k=0..n), n=0..12);
-
T[n_, k_, m_]:= (m+2)^(k*(n-k)); Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 28 2021 *)
-
T(n,k) = if(k<0 || k>n, 0, 3^(k*(n-k)));
-
def A118180(n, k, m): return (m+2)^(k*(n-k))
flatten([[A118180(n, k, 1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021
A118185
Triangle T(n,k) = 4^(k*(n-k)) for n>=k>=0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 16, 16, 1, 1, 64, 256, 64, 1, 1, 256, 4096, 4096, 256, 1, 1, 1024, 65536, 262144, 65536, 1024, 1, 1, 4096, 1048576, 16777216, 16777216, 1048576, 4096, 1, 1, 16384, 16777216, 1073741824, 4294967296, 1073741824, 16777216, 16384, 1
Offset: 0
A(x,y) = 1/(1-xy) + x/(1-4xy) + x^2/(1-16xy) + x^3/(1-64xy) + ...
Triangle begins:
1;
1, 1;
1, 4, 1;
1, 16, 16, 1;
1, 64, 256, 64, 1;
1, 256, 4096, 4096, 256, 1;
1, 1024, 65536, 262144, 65536, 1024, 1;
1, 4096, 1048576, 16777216, 16777216, 1048576, 4096, 1; ...
The matrix inverse T^-1 starts:
1;
-1, 1;
3, -4, 1;
-33, 48, -16, 1;
1407, -2112, 768, -64, 1;
-237057, 360192, -135168, 12288, -256, 1; ...
where [T^-1](n,k) = A118188(n-k)*4^(k*(n-k)).
-
[4^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 29 2021
-
Table[4^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 29 2021 *)
-
T(n, k)=if(n
-
flatten([[4^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 29 2021
A156581
Triangle T(n, k, m) = (m+2)^(k*(n-k)) with m = 15, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 17, 1, 1, 289, 289, 1, 1, 4913, 83521, 4913, 1, 1, 83521, 24137569, 24137569, 83521, 1, 1, 1419857, 6975757441, 118587876497, 6975757441, 1419857, 1, 1, 24137569, 2015993900449, 582622237229761, 582622237229761, 2015993900449, 24137569, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 17, 1;
1, 289, 289, 1;
1, 4913, 83521, 4913, 1;
1, 83521, 24137569, 24137569, 83521, 1;
1, 1419857, 6975757441, 118587876497, 6975757441, 1419857, 1;
-
A156581:= func< n,k,m | (m+2)^(k*(n-k)) >;
[A156581(n,k,15): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
-
(* First program *)
b[n_, k_]:= b[n, k]= If[k==0, n!, Product[Sum[Binomial[j-1, i]*(k+1)^i, {i, 0, j-1}], {j, n}]];
T[n_, k_, m_]:= T[n, k, m]= b[n, m]/(b[k, m]*b[n-k, m]);
Table[T[n, k, 15], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 28 2021 *)
(* Second program *)
T[n_, k_, m_]:= (m+2)^(k*(n-k)); Table[T[n,k,15], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 28 2021 *)
-
def A156581(n,k,m): return (m+2)^(k*(n-k))
flatten([[A156581(n,k,15) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021
A158116
Triangle T(n,k) = 6^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 36, 36, 1, 1, 216, 1296, 216, 1, 1, 1296, 46656, 46656, 1296, 1, 1, 7776, 1679616, 10077696, 1679616, 7776, 1, 1, 46656, 60466176, 2176782336, 2176782336, 60466176, 46656, 1, 1, 279936, 2176782336, 470184984576, 2821109907456, 470184984576, 2176782336, 279936, 1
Offset: 0
Triangle starts:
1;
1, 1;
1, 6, 1;
1, 36, 36, 1;
1, 216, 1296, 216, 1;
1, 1296, 46656, 46656, 1296, 1;
1, 7776, 1679616, 10077696, 1679616, 7776, 1;
1, 46656, 60466176, 2176782336, 2176782336, 60466176, 46656, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3), this sequence (m=4),
A176642 (m=6),
A158117 (m=8),
A176627 (m=10),
A176639 (m=13),
A156581 (m=15),
A176643 (m=19),
A176631 (m=20),
A176641 (m=26).
-
[6^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
With[{m=4}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
T(n,k) = 6^(k*(n-k));
for (n=0,11,for (k=0,n, print1(T(n,k),", "));print();); \\ Joerg Arndt, Feb 21 2014
-
flatten([[6^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
Showing 1-10 of 19 results.
Comments