A118195
Self-convolution square-root of A118191, where A118191 is column 0 of the matrix square of triangle A118190 with A118190(n,k) = (5^k)^(n-k).
Original entry on oeis.org
1, 1, 3, 23, 411, 15771, 1353045, 252512065, 106798723795, 99080638950595, 208993838938550873, 968425792397232696773, 10208662119796586878979989, 236472963735267887311598074949, 12462692176683507314938059670486683
Offset: 0
A(x) = 1 + x + 3*x^2 + 23*x^3 + 411*x^4 + 15771*x^5 + ...
A(x)^2 = 1 + 2*x + 7*x^2 + 52*x^3 + 877*x^4 + 32502*x^5 + ...
= 1/(1-x) + x/(1-5x) + x^2/(1-25x) + x^3/(1-125x) + ...
-
m:=30;
R:=PowerSeriesRing(Rationals(), m);
Coefficients(R!( Sqrt( (&+[x^j/(1-5^j*x): j in [0..m+2]]) ) )); // G. C. Greubel, Jun 30 2021
-
With[{m = 30}, CoefficientList[Series[Sqrt[Sum[x^j/(1 - 5^j*x), {j, 0, m + 2}]], {x, 0, m}], x]] (* G. C. Greubel, Jun 30 2021 *)
-
a(n)=polcoeff(sqrt(sum(k=0,n,sum(j=0, k, (5^j)^(k-j) )*x^k+x*O(x^n))),n)
-
m=30;
def A118195_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( sqrt(sum( x^j/(1-5^j*x) for j in (0..m+2))) ).list()
A118195_list(m) # G. C. Greubel, Jun 30 2021
A118190
Triangle T(n,k) = 5^(k*(n-k)) for n >= k >= 0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 25, 25, 1, 1, 125, 625, 125, 1, 1, 625, 15625, 15625, 625, 1, 1, 3125, 390625, 1953125, 390625, 3125, 1, 1, 15625, 9765625, 244140625, 244140625, 9765625, 15625, 1, 1, 78125, 244140625, 30517578125, 152587890625, 30517578125, 244140625, 78125, 1
Offset: 0
A(x,y) = 1/(1-x*y) + x/(1-5*x*y) + x^2/(1-25*x*y) + x^3/(1-125*x*y) + ...
Triangle begins:
1;
1, 1;
1, 5, 1;
1, 25, 25, 1;
1, 125, 625, 125, 1;
1, 625, 15625, 15625, 625, 1;
1, 3125, 390625, 1953125, 390625, 3125, 1;
1, 15625, 9765625, 244140625, 244140625, 9765625, 15625, 1; ...
The matrix inverse T^-1 starts:
1;
-1, 1;
4, -5, 1;
-76, 100, -25, 1;
7124, -9500, 2500, -125, 1;
-3326876, 4452500, -1187500, 62500, -625, 1; ...
where [T^-1](n,k) = A118193(n-k)*(5^k)^(n-k).
-
[5^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 29 2021
-
With[{m=3}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 29 2021 *)
-
T(n, k)=if(n
-
flatten([[5^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 29 2021
A118192
Antidiagonal sums of triangle A118190: a(n) = Sum_{k=0..floor(n/2)} 5^(k*(n-2*k)) for n>=0.
Original entry on oeis.org
1, 1, 2, 6, 27, 151, 1252, 18876, 421877, 11797501, 489062502, 36867190626, 4119892578127, 576049853531251, 119400024902343752, 45003894807128984376, 25145828723919677734377, 17579646409034759521875001
Offset: 0
A(x) = 1/(1-x^2) + x/(1-5*x^2) + x^2/(1-25*x^2) + x^3/(1-125*x^2) + ...
= 1 + x + 2*x^2 + 6*x^3 + 27*x^4 + 151*x^5 + ...
-
[(&+[5^(k*(n-2*k)): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Jun 29 2021
-
Table[Sum[5^(k*(n-2*k)), {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Jun 29 2021 *)
-
a(n)=sum(k=0, n\2, (5^k)^(n-2*k) )
-
[sum(5^(k*(n-2*k)) for k in (0..n//2)) for n in (0..30)] # G. C. Greubel, Jun 29 2021
Showing 1-3 of 3 results.
Comments