cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A118195 Self-convolution square-root of A118191, where A118191 is column 0 of the matrix square of triangle A118190 with A118190(n,k) = (5^k)^(n-k).

Original entry on oeis.org

1, 1, 3, 23, 411, 15771, 1353045, 252512065, 106798723795, 99080638950595, 208993838938550873, 968425792397232696773, 10208662119796586878979989, 236472963735267887311598074949, 12462692176683507314938059670486683
Offset: 0

Views

Author

Paul D. Hanna, Apr 15 2006

Keywords

Comments

In general, sqrt( Sum_{n>=0} x^n/(1 - q^n*x) ) is an integer series whenever q == 1 (mod 4).

Examples

			A(x) = 1 + x + 3*x^2 + 23*x^3 + 411*x^4 + 15771*x^5 + ...
A(x)^2 = 1 + 2*x + 7*x^2 + 52*x^3 + 877*x^4 + 32502*x^5 + ...
= 1/(1-x) + x/(1-5x) + x^2/(1-25x) + x^3/(1-125x) + ...
		

Crossrefs

Programs

  • Magma
    m:=30;
    R:=PowerSeriesRing(Rationals(), m);
    Coefficients(R!( Sqrt( (&+[x^j/(1-5^j*x): j in [0..m+2]]) ) )); // G. C. Greubel, Jun 30 2021
    
  • Mathematica
    With[{m = 30}, CoefficientList[Series[Sqrt[Sum[x^j/(1 - 5^j*x), {j, 0, m + 2}]], {x, 0, m}], x]] (* G. C. Greubel, Jun 30 2021 *)
  • PARI
    a(n)=polcoeff(sqrt(sum(k=0,n,sum(j=0, k, (5^j)^(k-j) )*x^k+x*O(x^n))),n)
    
  • Sage
    m=30;
    def A118195_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( sqrt(sum( x^j/(1-5^j*x) for j in (0..m+2))) ).list()
    A118195_list(m) # G. C. Greubel, Jun 30 2021

Formula

G.f.: A(x) = sqrt( Sum_{n>=0} x^n/(1-5^n*x) ).
a(n) ~ A118191(n)/2. - Vaclav Kotesovec, Aug 20 2025

A118190 Triangle T(n,k) = 5^(k*(n-k)) for n >= k >= 0, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 25, 25, 1, 1, 125, 625, 125, 1, 1, 625, 15625, 15625, 625, 1, 1, 3125, 390625, 1953125, 390625, 3125, 1, 1, 15625, 9765625, 244140625, 244140625, 9765625, 15625, 1, 1, 78125, 244140625, 30517578125, 152587890625, 30517578125, 244140625, 78125, 1
Offset: 0

Views

Author

Paul D. Hanna, Apr 15 2006

Keywords

Comments

Matrix power T^m satisfies: [T^m](n,k) = [T^m](n-k,0)*T(n,k) for all m and so the triangle has an invariant character. For example, the matrix inverse is defined by [T^-1](n,k) = A118193(n-k)*T(n,k); also, the matrix log is given by [log(T)](n,k) = A118194(n-k)*T(n,k).
For any column vector C, the matrix product of T*C transforms the g.f. of C: Sum_{n>=0} c(n)*x^n into the g.f.: Sum_{n>=0} c(n)*x^n/(1-5^n*x).

Examples

			A(x,y) = 1/(1-x*y) + x/(1-5*x*y) + x^2/(1-25*x*y) + x^3/(1-125*x*y) + ...
Triangle begins:
  1;
  1,     1;
  1,     5,       1;
  1,    25,      25,         1;
  1,   125,     625,       125,         1;
  1,   625,   15625,     15625,       625,       1;
  1,  3125,  390625,   1953125,    390625,    3125,     1;
  1, 15625, 9765625, 244140625, 244140625, 9765625, 15625, 1; ...
The matrix inverse T^-1 starts:
         1;
        -1,       1;
         4,      -5,        1;
       -76,     100,      -25,     1;
      7124,   -9500,     2500,  -125,    1;
  -3326876, 4452500, -1187500, 62500, -625, 1; ...
where [T^-1](n,k) = A118193(n-k)*(5^k)^(n-k).
		

Crossrefs

Cf. A118191 (row sums), A118192 (antidiagonal sums), A118193, A118194.
Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), this sequence (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15).

Programs

  • Magma
    [5^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 29 2021
    
  • Mathematica
    With[{m=3}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 29 2021 *)
  • PARI
    T(n, k)=if(n
    				
  • Sage
    flatten([[5^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 29 2021

Formula

G.f.: A(x,y) = Sum_{n>=0} x^n/(1-5^n*x*y).
G.f. satisfies: A(x,y) = 1/(1-x*y) + x*A(x,5*y).
T(n,k) = (1/n)*( 5^(n-k)*k*T(n-1,k-1) + 5^k*(n-k)*T(n-1,k) ), where T(i,j)=0 if j>i. - Tom Edgar, Feb 21 2014
T(n, k, m) = (m+2)^(k*(n-k)) with m = 3. - G. C. Greubel, Jun 29 2021

A118192 Antidiagonal sums of triangle A118190: a(n) = Sum_{k=0..floor(n/2)} 5^(k*(n-2*k)) for n>=0.

Original entry on oeis.org

1, 1, 2, 6, 27, 151, 1252, 18876, 421877, 11797501, 489062502, 36867190626, 4119892578127, 576049853531251, 119400024902343752, 45003894807128984376, 25145828723919677734377, 17579646409034759521875001
Offset: 0

Views

Author

Paul D. Hanna, Apr 15 2006

Keywords

Examples

			A(x) = 1/(1-x^2) + x/(1-5*x^2) + x^2/(1-25*x^2) + x^3/(1-125*x^2) + ...
  = 1 + x + 2*x^2 + 6*x^3 + 27*x^4 + 151*x^5 + ...
		

Crossrefs

Cf. A118190 (triangle), A118191 (row sums).

Programs

  • Magma
    [(&+[5^(k*(n-2*k)): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Jun 29 2021
    
  • Mathematica
    Table[Sum[5^(k*(n-2*k)), {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Jun 29 2021 *)
  • PARI
    a(n)=sum(k=0, n\2, (5^k)^(n-2*k) )
    
  • Sage
    [sum(5^(k*(n-2*k)) for k in (0..n//2)) for n in (0..30)] # G. C. Greubel, Jun 29 2021

Formula

G.f.: A(x) = Sum_{n>=0} x^n/(1-5^n*x^2).
a(2*n) = Sum_{k=0..n} 5^(2*k*(n-k)).
a(2*n+1) = Sum_{k=0..n} 5^(k*(2*(n-k)+1)).
Showing 1-3 of 3 results.