cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A118190 Triangle T(n,k) = 5^(k*(n-k)) for n >= k >= 0, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 25, 25, 1, 1, 125, 625, 125, 1, 1, 625, 15625, 15625, 625, 1, 1, 3125, 390625, 1953125, 390625, 3125, 1, 1, 15625, 9765625, 244140625, 244140625, 9765625, 15625, 1, 1, 78125, 244140625, 30517578125, 152587890625, 30517578125, 244140625, 78125, 1
Offset: 0

Views

Author

Paul D. Hanna, Apr 15 2006

Keywords

Comments

Matrix power T^m satisfies: [T^m](n,k) = [T^m](n-k,0)*T(n,k) for all m and so the triangle has an invariant character. For example, the matrix inverse is defined by [T^-1](n,k) = A118193(n-k)*T(n,k); also, the matrix log is given by [log(T)](n,k) = A118194(n-k)*T(n,k).
For any column vector C, the matrix product of T*C transforms the g.f. of C: Sum_{n>=0} c(n)*x^n into the g.f.: Sum_{n>=0} c(n)*x^n/(1-5^n*x).

Examples

			A(x,y) = 1/(1-x*y) + x/(1-5*x*y) + x^2/(1-25*x*y) + x^3/(1-125*x*y) + ...
Triangle begins:
  1;
  1,     1;
  1,     5,       1;
  1,    25,      25,         1;
  1,   125,     625,       125,         1;
  1,   625,   15625,     15625,       625,       1;
  1,  3125,  390625,   1953125,    390625,    3125,     1;
  1, 15625, 9765625, 244140625, 244140625, 9765625, 15625, 1; ...
The matrix inverse T^-1 starts:
         1;
        -1,       1;
         4,      -5,        1;
       -76,     100,      -25,     1;
      7124,   -9500,     2500,  -125,    1;
  -3326876, 4452500, -1187500, 62500, -625, 1; ...
where [T^-1](n,k) = A118193(n-k)*(5^k)^(n-k).
		

Crossrefs

Cf. A118191 (row sums), A118192 (antidiagonal sums), A118193, A118194.
Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), this sequence (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15).

Programs

  • Magma
    [5^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 29 2021
    
  • Mathematica
    With[{m=3}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 29 2021 *)
  • PARI
    T(n, k)=if(n
    				
  • Sage
    flatten([[5^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 29 2021

Formula

G.f.: A(x,y) = Sum_{n>=0} x^n/(1-5^n*x*y).
G.f. satisfies: A(x,y) = 1/(1-x*y) + x*A(x,5*y).
T(n,k) = (1/n)*( 5^(n-k)*k*T(n-1,k-1) + 5^k*(n-k)*T(n-1,k) ), where T(i,j)=0 if j>i. - Tom Edgar, Feb 21 2014
T(n, k, m) = (m+2)^(k*(n-k)) with m = 3. - G. C. Greubel, Jun 29 2021

A118194 Column 0 of the matrix log of triangle A118190, after term in row n is multiplied by n: a(n) = n*[log(A118190)](n,0), where A118190(n,k) = 5^(k*(n-k)).

Original entry on oeis.org

0, 1, -3, 53, -4871, 2262505, -5269940619, 61424345593757, -3580474937256484367, 1043606492389898678125009, -1520932783784930699920673828115, 11082945991224258678496051788222656261, -403804307486446123171767495567989349951171863
Offset: 0

Views

Author

Paul D. Hanna, Apr 15 2006

Keywords

Comments

The entire matrix log of triangle A118190 is determined by column 0 (this sequence): [log(A118190)](n,k) = a(n-k)5^(k*(n-k))/(n-k) for n>k>=0.

Examples

			Column 0 of log(A118190) = [0, 1, -3/2, 53/3, -4871/4, ...].
The g.f. is illustrated by:
x/(1-x)^2 = x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + ...
  = x/(1-5*x) -3*x^2/(1-25*x) +53*x^3/(1-125*x) -4871*x^4/(1-625*x) + 2262505*x^5/(1-3125*x) - 5269940619*x^6/(1-15625*x) + ...
		

Crossrefs

Cf. A118190.

Programs

  • Mathematica
    A118193[n_]:= A118193[n]= If[n<2, (-1)^n, -Sum[5^(j*(n-j))*A118193[j], {j, 0, n-1}]];
    a[n_]:= a[n]= -Sum[5^(j*(n-j))*j*A118193[j], {j, 0, n}];
    Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jun 29 2021 *)
  • PARI
    {a(n)=local(T=matrix(n+1,n+1,r,c,if(r>=c,(5^(c-1))^(r-c))), L=sum(m=1,#T,-(T^0-T)^m/m));return(n*L[n+1,1])}
    
  • Sage
    @CachedFunction
    def A118193(n): return (-1)^n if (n<2) else -sum(5^(j*(n-j))*A118193(j) for j in (0..n-1))
    def a(n): return (-1)*sum(5^(j*(n-j))*j*A118193(j) for j in (0..n))
    [a(n) for n in (0..30)] # G. C. Greubel, Jun 29 2021

Formula

G.f.: x/(1-x)^2 = Sum_{n>=0} a(n)*x^n/(1-5^n*x). By using the inverse transformation: a(n) = Sum_{k=0..n} k*A118193(n-k)*5^(k*(n-k)) for n>=0.
Showing 1-2 of 2 results.