A118180
Triangle T(n, k) = 3^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 9, 9, 1, 1, 27, 81, 27, 1, 1, 81, 729, 729, 81, 1, 1, 243, 6561, 19683, 6561, 243, 1, 1, 729, 59049, 531441, 531441, 59049, 729, 1, 1, 2187, 531441, 14348907, 43046721, 14348907, 531441, 2187, 1, 1, 6561, 4782969, 387420489, 3486784401, 3486784401, 387420489, 4782969, 6561, 1
Offset: 0
A(x,y) = 1/(1-xy) + x/(1-3xy) + x^2/(1-9xy) + x^3/(1-27xy) + ...
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 9, 9, 1;
1, 27, 81, 27, 1;
1, 81, 729, 729, 81, 1;
1, 243, 6561, 19683, 6561, 243, 1;
1, 729, 59049, 531441, 531441, 59049, 729, 1;
1, 2187, 531441, 14348907, 43046721, 14348907, 531441, 2187, 1; ...
The matrix inverse T^-1 starts:
1;
-1, 1;
2, -3, 1;
-10, 18, -9, 1;
134, -270, 162, -27, 1;
-4942, 10854, -7290, 1458, -81, 1; ...
where [T^-1](n,k) = A118183(n-k)*(3^k)^(n-k).
Cf.
A117401 = ConvOffsStoT transform of 2^n.
-
A118180:= func< n, k, m | (m+2)^(k*(n-k)) >;
[A118180(n, k, 1): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
-
seq(seq( (3^k)^(n-k), k=0..n), n=0..12);
-
T[n_, k_, m_]:= (m+2)^(k*(n-k)); Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 28 2021 *)
-
T(n,k) = if(k<0 || k>n, 0, 3^(k*(n-k)));
-
def A118180(n, k, m): return (m+2)^(k*(n-k))
flatten([[A118180(n, k, 1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021
A118184
Column 0 of the matrix log of triangle A118180, after term in row n is multiplied by n: a(n) = n*[log(A118180)](n,0), where A118180(n,k) = 3^(k*(n-k)).
Original entry on oeis.org
0, 1, -1, 3, -23, 329, 18231, -22030373, 34718491601, -130548608723439, 1300095260497408879, -35497483240662990289357, 2687397326811421691366217657, -562747611676887059779727492799911, 320110532506391993959111359699070808231
Offset: 0
Column 0 of log(A118180) = [0, 1, -1/2, 3/3, -23/4, 329/5, 18231/6, ...].
The g.f. is illustrated by:
x/(1-x)^2 = x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + ...
= x/(1-3*x) - x^2/(1-9*x) + 3*x^3/(1-27*x) - 23*x^4/(1-81*x) + 329*x^5/(1-243*x) + 18231*x^6/(1-729*x) - 22030373*x^7/(1-2187*x) + ...
-
A118183[n_]:= A118183[n]= If[n<2, (-1)^n, -Sum[3^(j*(n-j))*A118183[j], {j,0,n-1}]];
a[n_]:= a[n]= -Sum[3^(j*(n-j))*j*A118183[j], {j, 0, n}];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jun 29 2021 *)
-
{a(n)=local(T=matrix(n+1,n+1,r,c,if(r>=c,(3^(c-1))^(r-c))), L=sum(m=1,#T,-(T^0-T)^m/m));return(n*L[n+1,1])}
-
@CachedFunction
def A118183(n): return (-1)^n if (n<2) else -sum(3^(j*(n-j))*A118183(j) for j in (0..n-1))
def a(n): return (-1)*sum( 3^(j*(n-j))*j*A118183(j) for j in (0..n))
[a(n) for n in (0..30)] # G. C. Greubel, Jun 29 2021
A118181
Row sums of triangle A118180: a(n) = Sum_{k=0..n} (3^k)^(n-k) for n>=0.
Original entry on oeis.org
1, 2, 5, 20, 137, 1622, 33293, 1182440, 72811793, 7757988842, 1433154521621, 458101483131260, 253879024041595289, 243453910296759945662, 404765167247068325944349, 1164432505878183620543030480
Offset: 0
A(x) = 1/(1-x) + x/(1-3x) + x^2/(1-9x) + x^3/(1-27x) + ...
= 1 + 2*x + 5*x^2 + 20*x^3 + 137*x^4 + 1622*x^5 + 33293*x^6 +...
-
[(&+[3^(k*(n-k)): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jun 29 2021
-
seq( add(3^(k*(n-k)), k=0..n), n=0..30); # modified by G. C. Greubel, Jun 29 2021
-
Table[Sum[3^(k*(n-k)), {k,0,n}], {n,0,30}] (* G. C. Greubel, Jun 29 2021 *)
-
a(n)=sum(k=0, n, (3^k)^(n-k) );
-
[sum(3^(k*(n-k)) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 29 2021
A118182
Antidiagonal sums of triangle A118180: a(n) = Sum_{k=0..[n/2]} (3^k)^(n-2*k) for n>=0.
Original entry on oeis.org
1, 1, 2, 4, 11, 37, 164, 1000, 8021, 81001, 1076006, 19683244, 473632031, 14349084877, 571833704648, 31381448626000, 2265367321680041, 205893684435186001, 24615565942378859210, 4052605390737766057684
Offset: 0
A(x) = 1/(1-x^2) + x/(1-3x^2) + x^2/(1-9x^2) + x^3/(1-27x^2) +...
= 1 + x + 2*x^2 + 4*x^3 + 11*x^4 + 37*x^5 + 164*x^6 + 1000*x^7 +...
-
[(&+[3^(k*(n-2*k)): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Jun 29 2021
-
Table[Sum[3^(k*(n-2*k)), {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Jun 29 2021 *)
-
a(n)=sum(k=0, n\2, (3^k)^(n-2*k) );
-
[sum(3^(k*(n-2*k)) for k in (0..n//2)) for n in (0..30)] # G. C. Greubel, Jun 29 2021
Showing 1-4 of 4 results.
Comments