A118185 Triangle T(n,k) = 4^(k*(n-k)) for n>=k>=0, read by rows.
1, 1, 1, 1, 4, 1, 1, 16, 16, 1, 1, 64, 256, 64, 1, 1, 256, 4096, 4096, 256, 1, 1, 1024, 65536, 262144, 65536, 1024, 1, 1, 4096, 1048576, 16777216, 16777216, 1048576, 4096, 1, 1, 16384, 16777216, 1073741824, 4294967296, 1073741824, 16777216, 16384, 1
Offset: 0
Examples
A(x,y) = 1/(1-xy) + x/(1-4xy) + x^2/(1-16xy) + x^3/(1-64xy) + ... Triangle begins: 1; 1, 1; 1, 4, 1; 1, 16, 16, 1; 1, 64, 256, 64, 1; 1, 256, 4096, 4096, 256, 1; 1, 1024, 65536, 262144, 65536, 1024, 1; 1, 4096, 1048576, 16777216, 16777216, 1048576, 4096, 1; ... The matrix inverse T^-1 starts: 1; -1, 1; 3, -4, 1; -33, 48, -16, 1; 1407, -2112, 768, -64, 1; -237057, 360192, -135168, 12288, -256, 1; ... where [T^-1](n,k) = A118188(n-k)*4^(k*(n-k)).
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
[4^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 29 2021
-
Mathematica
Table[4^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 29 2021 *)
-
PARI
T(n, k)=if(n
-
Sage
flatten([[4^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 29 2021
Formula
G.f.: A(x,y) = Sum_{n>=0} x^n/(1-4^n*x*y).
G.f. satisfies: A(x,y) = 1/(1-x*y) + x*A(x,4*y).
T(n,k) = (1/n)*( 4^(n-k)*k*T(n-1,k-1) + 4^k*(n-k)*T(n-1,k) ), where T(i,j)=0 if j>i. - Tom Edgar, Feb 20 2014
T(n, k, m) = (m+2)^(k*(n-k)) with m = 2. - G. C. Greubel, Jun 29 2021
Comments