A118190 Triangle T(n,k) = 5^(k*(n-k)) for n >= k >= 0, read by rows.
1, 1, 1, 1, 5, 1, 1, 25, 25, 1, 1, 125, 625, 125, 1, 1, 625, 15625, 15625, 625, 1, 1, 3125, 390625, 1953125, 390625, 3125, 1, 1, 15625, 9765625, 244140625, 244140625, 9765625, 15625, 1, 1, 78125, 244140625, 30517578125, 152587890625, 30517578125, 244140625, 78125, 1
Offset: 0
Examples
A(x,y) = 1/(1-x*y) + x/(1-5*x*y) + x^2/(1-25*x*y) + x^3/(1-125*x*y) + ... Triangle begins: 1; 1, 1; 1, 5, 1; 1, 25, 25, 1; 1, 125, 625, 125, 1; 1, 625, 15625, 15625, 625, 1; 1, 3125, 390625, 1953125, 390625, 3125, 1; 1, 15625, 9765625, 244140625, 244140625, 9765625, 15625, 1; ... The matrix inverse T^-1 starts: 1; -1, 1; 4, -5, 1; -76, 100, -25, 1; 7124, -9500, 2500, -125, 1; -3326876, 4452500, -1187500, 62500, -625, 1; ... where [T^-1](n,k) = A118193(n-k)*(5^k)^(n-k).
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
[5^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 29 2021
-
Mathematica
With[{m=3}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 29 2021 *)
-
PARI
T(n, k)=if(n
-
Sage
flatten([[5^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 29 2021
Formula
G.f.: A(x,y) = Sum_{n>=0} x^n/(1-5^n*x*y).
G.f. satisfies: A(x,y) = 1/(1-x*y) + x*A(x,5*y).
T(n,k) = (1/n)*( 5^(n-k)*k*T(n-1,k-1) + 5^k*(n-k)*T(n-1,k) ), where T(i,j)=0 if j>i. - Tom Edgar, Feb 21 2014
T(n, k, m) = (m+2)^(k*(n-k)) with m = 3. - G. C. Greubel, Jun 29 2021
Comments