A118191 Row sums of triangle A118190: a(n) = Sum_{k=0..n} 5^(k*(n-k)) for n>=0.
1, 2, 7, 52, 877, 32502, 2740627, 507843752, 214111484377, 198376465625002, 418186492923828127, 1937270172119160156252, 20419262349796295263671877, 472966350615029335022460937502, 24925857360591180741786959228515627
Offset: 0
Keywords
Examples
A(x) = 1/(1-x) + x/(1-5*x) + x^2/(1-25*x) + x^3/(1-125*x) + ... = 1 + 2*x + 7*x^2 + 52*x^3 + 877*x^4 + 32502*x^5 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..70
Programs
-
Magma
[(&+[5^(k*(n-k)): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jun 29 2021
-
Mathematica
Table[Sum[5^(k*(n-k)), {k,0,n}], {n,0,30}] (* G. C. Greubel, Jun 29 2021 *)
-
PARI
a(n)=sum(k=0, n, (5^k)^(n-k))
-
Sage
[sum(5^(k*(n-k)) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 29 2021
Formula
G.f.: A(x) = Sum_{n>=0} x^n/(1-5^n*x).
a(n) ~ c * 5^(n^2/4), where c = EllipticTheta[3, 0, 1/5] (in Mathematica) = JacobiTheta3(0,1/5) (in Maple) = 1.40320102401310720671088653743895... if n is even and c = EllipticTheta[2, 0, 1/5] = JacobiTheta2(0,1/5) = 1.39106543858832939481476315485543... if n is odd. - Vaclav Kotesovec, Aug 20 2025
Comments