cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118239 Engel expansion of cosh(1).

Original entry on oeis.org

1, 2, 12, 30, 56, 90, 132, 182, 240, 306, 380, 462, 552, 650, 756, 870, 992, 1122, 1260, 1406, 1560, 1722, 1892, 2070, 2256, 2450, 2652, 2862, 3080, 3306, 3540, 3782, 4032, 4290, 4556, 4830, 5112, 5402, 5700, 6006, 6320, 6642, 6972, 7310, 7656, 8010, 8372
Offset: 1

Views

Author

Eric W. Weisstein, Apr 17 2006

Keywords

Comments

Differs from A002939 only in first term.
This sequence is also the Pierce expansion of cos(1). - G. C. Greubel, Nov 14 2016

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[(2 n - 2) (2 n - 3), {n, 2, 50}]] (* Bruno Berselli, Aug 04 2015 *)
    Join[{1}, LinearRecurrence[{3,-3,1},{2,12,30},25]] (* G. C. Greubel, Oct 27 2016 *)
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[Cos[1] , 7!], 50] (* G. C. Greubel, Nov 14 2016 *)
  • PARI
    a(n)=max(4*n^2-10*n+6, 1) \\ Charles R Greathouse IV, Oct 22 2014
    
  • Sage
    A118239 = lambda n: falling_factorial(n*2,2) if n>0 else 1
    print([A118239(n) for n in (0..46)]) # Peter Luschny, Aug 04 2015

Formula

a(n) = A002939(n-1) = 2*(n-1)*(2*n-3) for n>1.
From Colin Barker, Apr 13 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(1 - x + 9*x^2 - x^3)/(1-x)^3. (End)
E.g.f.: -6 + x + 2*(3 - 3*x + 2*x^2)*exp(x). - G. C. Greubel, Oct 27 2016
From Amiram Eldar, May 05 2025: (Start)
Sum_{n>=1} 1/a(n) = log(2) + 1.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - Pi/4 + log(2)/2. (End)