A118239 Engel expansion of cosh(1).
1, 2, 12, 30, 56, 90, 132, 182, 240, 306, 380, 462, 552, 650, 756, 870, 992, 1122, 1260, 1406, 1560, 1722, 1892, 2070, 2256, 2450, 2652, 2862, 3080, 3306, 3540, 3782, 4032, 4290, 4556, 4830, 5112, 5402, 5700, 6006, 6320, 6642, 6972, 7310, 7656, 8010, 8372
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Engel Expansion.
- Eric Weisstein's World of Mathematics, Pierce Expansion.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Join[{1}, Table[(2 n - 2) (2 n - 3), {n, 2, 50}]] (* Bruno Berselli, Aug 04 2015 *) Join[{1}, LinearRecurrence[{3,-3,1},{2,12,30},25]] (* G. C. Greubel, Oct 27 2016 *) PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[Cos[1] , 7!], 50] (* G. C. Greubel, Nov 14 2016 *)
-
PARI
a(n)=max(4*n^2-10*n+6, 1) \\ Charles R Greathouse IV, Oct 22 2014
-
Sage
A118239 = lambda n: falling_factorial(n*2,2) if n>0 else 1 print([A118239(n) for n in (0..46)]) # Peter Luschny, Aug 04 2015
Formula
a(n) = A002939(n-1) = 2*(n-1)*(2*n-3) for n>1.
From Colin Barker, Apr 13 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(1 - x + 9*x^2 - x^3)/(1-x)^3. (End)
E.g.f.: -6 + x + 2*(3 - 3*x + 2*x^2)*exp(x). - G. C. Greubel, Oct 27 2016
From Amiram Eldar, May 05 2025: (Start)
Sum_{n>=1} 1/a(n) = log(2) + 1.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - Pi/4 + log(2)/2. (End)
Comments