cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A118271 Expansion of (9 * theta_4(q^3)^4 - theta_4(q)^4) / 8 in powers of q.

Original entry on oeis.org

1, 1, -3, -5, -3, 6, 15, 8, -3, -23, -18, 12, 15, 14, -24, -30, -3, 18, 69, 20, -18, -40, -36, 24, 15, 31, -42, -77, -24, 30, 90, 32, -3, -60, -54, 48, 69, 38, -60, -70, -18, 42, 120, 44, -36, -138, -72, 48, 15, 57, -93, -90, -42, 54, 231, 72, -24, -100, -90, 60, 90, 62, -96, -184, -3, 84, 180, 68, -54, -120, -144
Offset: 0

Views

Author

Michael Somos, Apr 21 2006

Keywords

Examples

			1 + q - 3*q^2 - 5*q^3 - 3*q^4 + 6*q^5 + 15*q^6 + 8*q^7 - 3*q^8 - ...
		

Crossrefs

Programs

  • Mathematica
    eta[q_] := q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[eta[q^2]^5 *eta[q^3]^3/(eta[q]*eta[q^6]^3), {q, 0, 55}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jul 11 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=1, sqrtint(n), 2 * (-x)^k^2, 1 + x * O(x^n))^4 - 9 * sum( k=1, sqrtint(n\3), 2 * (-x^3)^k^2, 1 + x * O(x^n))^4, n) / -8)}
    
  • PARI
    {a(n) = if( n<1, n==0, -(-1)^n * ( sumdiv( n, d, d * (1 - if( d%3==0, 3) - if( d%4==0, 1) + if(d%12==0, 3)))))}
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, -3, if( p==3, 4 - 3^(e+1), (p^(e+1) - 1) / (p - 1))))))}
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^3 + A)^3 / eta(x + A) / eta(x^6 + A)^3, n))}

Formula

Expansion of eta(q^2)^5 * eta(q^3)^3 / (eta(q) * eta(q^6)^3) in powers of q.
Expansion of b(q^2) * (4*b(q^4) - b(q)) / 3 in powers of q where b() is a cubic AGM theta function.
Euler transform of period 6 sequence [ 1, -4, -2, -4, 1, -4, ...].
a(n) is multiplicative with a(2^e) = -3 if e>0, a(3^e) = 4 - 3^(e+1), a(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
a(3*n) = A109506(3*n). a(3*n + 1) = A109506(3*n + 1). a(3*n + 2) = -3 * A118272(n).
Dirichlet g.f.: zeta(s) * zeta(s-1) * (1 - 2^(2-s)) * (1 - 2^(1-s)) * (1 - 3^(2-s)). - Amiram Eldar, Oct 28 2023

A252651 Expansion of q^(-1/2) * (eta(q) * eta(q^2) * eta(q^6) / eta(q^3))^2 in powers of q.

Original entry on oeis.org

1, -2, -3, 8, -2, -6, 14, -12, -9, 20, -16, -12, 31, -2, -15, 32, -24, -24, 38, -28, -21, 44, -12, -24, 57, -36, -27, 72, -40, -30, 62, -16, -42, 68, -48, -36, 74, -62, -48, 80, -2, -42, 108, -60, -45, 112, -64, -60, 98, -24, -51, 104, -96, -54, 110, -76, -57
Offset: 0

Views

Author

Michael Somos, Mar 22 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 2*x - 3*x^2 + 8*x^3 - 2*x^4 - 6*x^5 + 14*x^6 - 12*x^7 - 9*x^8 + ...
G.f. = q - 2*q^3 - 3*q^5 + 8*q^7 - 2*q^9 - 6*q^11 + 14*q^13 - 12*q^15 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(36), 2), 115); A[2] - 2*A[4] - 3*A[6] + 8*A[8] - 2*A[10];
  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[q^(-1/2)* (eta[q]*eta[q^2]*eta[q^6]/eta[q^3])^2, {q, 0, n}]; Table[a[n], {n,0,50}] (* G. C. Greubel, Apr 07 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^2 + A) * eta(x^6 + A) / eta(x^3 + A))^2, n))};
    

Formula

Expansion of f(-x^4)^4 * f(-x^6)^2 / f(x^2, x^4)^2 = f(-x^4)^4 * f(-x^2, -x^10)^2 / f(-x^12)^2 in powers of x where f() is a Ramanujan theta function.
Expansion of q^(-1/2) * sqrt(b(q) / (3 * c(q))) * b(q^2) * c(q^2) in powers of q where b(), c() are cubic AGM theta functions.
Euler transform of period 6 sequence [ -2, -4, 0, -4, -2, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 81 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A118272.
G.f.: Product_{k>0} (1 - x^(2*k))^4 * (1 - x^k + x^(2*k))^2.
-2 * a(n) = A252650(2*n + 1).
Showing 1-2 of 2 results.