cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A134077 Expansion of psi(x) * phi(-x)^3 / chi(-x^3)^3 in powers of x where phi(), psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, -5, 6, 8, -23, 12, 14, -30, 18, 20, -40, 24, 31, -77, 30, 32, -60, 48, 38, -70, 42, 44, -138, 48, 57, -90, 54, 72, -100, 60, 62, -184, 84, 68, -120, 72, 74, -155, 96, 80, -239, 84, 108, -150, 90, 112, -160, 120, 98, -276, 102, 104, -240, 108, 110, -190, 114
Offset: 0

Views

Author

Michael Somos, Oct 06 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 5*x + 6*x^2 + 8*x^3 - 23*x^4 + 12*x^5 + 14*x^6 - 30*x^7 + 18*x^8 + ...
G.f. = q - 5*q^3 + 6*q^5 + 8*q^7 - 23*q^9 + 12*q^11 + 14*q^13 - 30*q^15 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1/2) x^(-1/8) EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 4, 0, x]^3 QPochhammer[ -x^3, x^3]^3, {x, 0, n}]; (* Michael Somos, Oct 27 2015 *)
    a[ n_] := SeriesCoefficient[ (1/16) x^(-1/2) (EllipticTheta[ 2, 0, x^(1/2)]^4 - 9 EllipticTheta[ 2, 0, x^(3/2)]^4), {x, 0, n}]; (* Michael Somos, Oct 27 2015 *)
  • PARI
    {a(n) = my(A); if ( n<0, 0, A = x * O(x^n) ; polcoeff( eta(x + A)^5 * eta(x^6 + A)^3 / ( eta(x^2 + A) * eta(x^3 + A)^3 ), n))};

Formula

Expansion of psi(x)^4 - 9 * x * psi(x^3)^4 in powers of x where psi() is a Ramanujan theta function.
Expansion of x^(-1/2) * (b(x)^3 * c(x^2)^2 / (3 * c(x)))^(1/2) in powers of x where b(), c() are cubic AGM functions.
Expansion of q^(-1/2) * eta(q)^5 * eta(q^6)^3 / (eta(q^2) * eta(q^3)^3) in powers of q.
Euler transform of period 6 sequence [-5, -4, -2, -4, -5, -4, ...].
a(n) = b(2*n+1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = 4 - 3^(e+1), b(p^e) = (p^(e+1) - 1)/(p - 1) if p>5.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 18 (t/i)^2 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A124449
G.f.: Product_{k>0} (1 - x^k)^2 * (1 - x^(2*k))^2 * (1 - x^k + x^(2*k))^3.
G.f.: Sum_{k>0} k * f(x^k) - 9 * k * f(x^(3*k)) where f(x) = x * (1 - x) / ((1 + x) * (1 + x^2)).
G.f.: f(x) - 3 * f(x^2) - 9 * f(x^3) + 2 * f(x^4) + 27 * f(x^6) - 18 * f(x^12) where f() is the g.f. of A000203.
a(n) = A131944(2*n + 1) = A118271(2*n + 1). a(3*n + 2) = 6 * A098098(n).

A185717 Expansion of q^(-1) * c(q^2) * (c(q) - c(q^4)) / 9 in powers of q^2 where c() is a cubic AGM theta function.

Original entry on oeis.org

1, 3, 6, 8, 9, 12, 14, 18, 18, 20, 24, 24, 31, 27, 30, 32, 36, 48, 38, 42, 42, 44, 54, 48, 57, 54, 54, 72, 60, 60, 62, 72, 84, 68, 72, 72, 74, 93, 96, 80, 81, 84, 108, 90, 90, 112, 96, 120, 98, 108, 102, 104, 144, 108, 110, 114, 114, 144, 126, 144, 133, 126, 156, 128
Offset: 0

Views

Author

Michael Somos, Feb 10 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 3*x + 6*x^2 + 8*x^3 + 9*x^4 + 12*x^5 + 14*x^6 + 18*x^7 + 18*x^8 + ...
q + 3*q^3 + 6*q^5 + 8*q^7 + 9*q^9 + 12*q^11 + 14*q^13 + 18*q^15 + ...
		

Crossrefs

Programs

  • Mathematica
    A185717[n_] := SeriesCoefficient[(QPochhammer[q^3, q^3]/QPochhammer[-q^3, q^3])^4*(1/(QPochhammer[q, q^2]*QPochhammer[q^3, q^6])^3), {q, 0, n}];
    Table[A185717[n], {n, 0, 50}] (* G. C. Greubel, Jul 10 2017 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv( n, d, if( (n/d) % 3, 1, 0) * d))}
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A)^5 / (eta(x + A)^3 * eta(x^6 + A)), n))}

Formula

Expansion of phi(-x^3)^4 / (chi(-x) * chi(-x^3))^3 in powers of x where phi(), chi() are Ramanujan theta functions.
Euler transform of period 6 sequence [ 3, 0, -2, 0, 3, -4, ...].
a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(3^e) = 3^e, b(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 2 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A118271.
a(3*n + 1) = 3 * a(n). A078708(2*n + 1) = A121443(2*n + 1) = A124449(2*n + 1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/9 = 1.0966227... (A100044). - Amiram Eldar, Dec 28 2023

A118272 Expansion of q^(-2/3) * (eta(q) * eta(q^3) * eta(q^6) / eta(q^2))^2 in powers of q.

Original entry on oeis.org

1, -2, 1, -4, 8, -6, 6, -8, 14, -10, 1, -16, 20, -14, 12, -16, 31, -18, 8, -20, 32, -28, 18, -24, 38, -32, 6, -28, 44, -30, 24, -40, 57, -34, 14, -36, 72, -38, 30, -48, 62, -52, 1, -44, 68, -46, 48, -56, 74, -50, 20, -64, 80, -64, 42, -56, 108, -58, 12, -60, 112, -76, 48, -64, 98, -66, 31, -80, 104, -80, 54, -88
Offset: 0

Views

Author

Michael Somos, Apr 21 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + x^2 - 4*x^3 + 8*x^4 - 6*x^5 + 6*x^6 - 8*x^7 + 14*x^8 + ...
G.f. = q^2 - 2*q^5 + q^8 - 4*q^11 + 8*q^14 - 6*q^17 + 6*q^20 - 8*q^23 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(36), 2), 180); A[3] - 2*A[6] + A[9]; /* Michael Somos, Mar 22 2015 */
  • Mathematica
    QP:= QPochhammer; a[n_]:= SeriesCoefficient[QP[x^3]^6/(QP[-x, x^3]* QP[-x^2, x^3]*QP[x^3])^2, {x, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 15 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^3 + A) * eta(x^6 + A) / eta(x^2 + A))^2, n))};
    
  • PARI
    q='q+O('q^99); Vec((eta(q)*eta(q^3)*eta(q^6)/eta(q^2))^2) \\ Altug Alkan, Apr 16 2018
    

Formula

Expansion of f(-x^3)^6 / f(x, x^2)^2 = phi(-x^3)^2 * f(-x, -x^5)^2 in powers of x where phi(), f() are Ramanujan theta functions. - Michael Somos, Mar 22 2015
Euler transform of period 6 sequence [ -2, 0, -4, 0, -2, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 16 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A252651. - Michael Somos, Mar 22 2015
G.f.: Product_{k>0} (1 - x^k)^2 * (1 - x^(3*k))^2 * (1 - x^(2*k) + x^(4*k))^2. - Michael Somos, Mar 22 2015
-3 * a(n) = A118271(3*n + 2).

A214456 Expansion of b(q^2) * (b(q) + 2 * b(q^4)) / 3 in powers of q where b() is a cubic AGM theta function.

Original entry on oeis.org

1, -1, -3, 5, -3, -6, 15, -8, -3, 23, -18, -12, 15, -14, -24, 30, -3, -18, 69, -20, -18, 40, -36, -24, 15, -31, -42, 77, -24, -30, 90, -32, -3, 60, -54, -48, 69, -38, -60, 70, -18, -42, 120, -44, -36, 138, -72, -48, 15, -57, -93, 90, -42, -54, 231, -72, -24, 100
Offset: 0

Views

Author

Michael Somos, Jul 18 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 - q - 3*q^2 + 5*q^3 - 3*q^4 - 6*q^5 + 15*q^6 - 8*q^7 - 3*q^8 + 23*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (9 EllipticTheta[ 3, 0, q^3]^4 - EllipticTheta[ 3, 0, q]^4) / 8, {q, 0, n}]
    a[ n_] := SeriesCoefficient[ QPochhammer[q^2]^4 QPochhammer[-q^3, q^6]^3 /QPochhammer[-q, q^2], {q, 0, n}]
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -q, q^2] QPochhammer[ -q^3, q^6])^3 EllipticTheta[ 2, 0, (-q)^(1/2)]^4 / (16 (-q)^(1/2)), {q, 0, n}]
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A)^2 * eta(x^4 + A) * eta(x^6 + A)^6 / ( eta(x^3 + A) * eta(x^12 + A))^3, n))}
    
  • PARI
    {a(n) = if( n<1, n==0, -sigma(n) + if( n%3==0, 9 * sigma(n/3)) + if( n%4==0, 4 * sigma(n/4)) + if( n%12==0, -36 * sigma(n/12)))}
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); - prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 3, if( p==3, 4 - 3^(e+1), (p^(e+1) - 1) / (p - 1))))))}

Formula

Expansion of (9 * phi(q^3)^4 - phi(q)^4) / 8 = phi(q) * (psi(-q) * chi(q^3))^3 = psi(-q)^4 * (chi(q) * chi(q^3))^3 in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of eta(q) * eta(q^2)^2 * eta(q^4) * eta(q^6)^6 / ( eta(q^3) * eta(q^12))^3 in powers of q.
Euler transform of period 12 sequence [ -1, -3, 2, -4, -1, -6, -1, -4, 2, -3, -1, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 36 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A214361.
a(n) = -b(n) where b() is multiplicative with b(2^e) = 3 if e>0, b(3^e) = 4 - 3^(e+1), b(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
G.f.: Product_{k>0} (1 - x^(2*k))^4 * (1 + x^(6*k-3))^3 / (1 + x^(2*k-1)).
a(n) = (-1)^n * A118271(n). a(2*n) = a(4*n) = A131943(n). a(2*n + 1) = -A134077(n).
Showing 1-4 of 4 results.