cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A098098 a(n) = sigma(6*n+5)/6.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 7, 8, 9, 10, 14, 12, 16, 14, 15, 20, 17, 18, 19, 24, 26, 22, 23, 28, 25, 32, 32, 28, 29, 30, 38, 32, 33, 40, 40, 44, 42, 38, 39, 40, 57, 42, 43, 44, 45, 62, 47, 56, 49, 56, 62, 52, 53, 60, 64, 68, 64, 58, 59, 60, 74, 72, 70, 64, 65, 80, 67, 76, 80, 70, 93, 72
Offset: 0

Views

Author

Vladeta Jovovic, Sep 14 2004

Keywords

Comments

Euler transform of period 6 sequence [2, 0, 0, 0, 2, -4, ...].
Expansion of q^(-5/6) * (eta(q)^-1 * eta(q^2) * eta(q^3) * eta(q^6))^2 in powers of q. - Michael Somos, Sep 16 2004
2*a(n) is the number of bipartitions of 2*n+1 that are 3-cores. See Baruah and Nath. - Michel Marcus, Apr 13 2020

Examples

			G.f. =1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 8*x^5 + 7*x^6 + 8*x^7 + 9*x^8 + 10*x^9 + ...
G.f. = q^5 + 2*q^11 + 3*q^17 + 4*q^23 + 5*q^29 + 8*q^35 + 7*q^41 + 8*q^47 + 9*q^53 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0( 36), 2), 432)[6]; /* Michael Somos, Jul 09 2018 */
  • Mathematica
    Table[DivisorSigma[1, 6 n + 5]/6, {n, 0, 71}] (* Ivan Neretin, Apr 30 2016 *)
  • PARI
    a(n) = sigma(6*n + 5)/6
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A) * eta(x^6 + A) / eta(x + A))^2, n))} /* Michael Somos, Sep 16 2004 */
    

Formula

G.f.: (Product_{k>0} (1 + x^k) * (1 - x^(3*k)) * (1 - x^(6*k)))^2. - Michael Somos, Sep 16 2004
From Michael Somos, Jul 09 2018: (Start)
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A252650. -
Convolution square of A121444.
A232343(2*n) = (-1)^n * A258831(n) = A000203(6*n + 4) = a(n). A033686(2*n) = -A134079(2*n + 1) = 2 * a(n). A121443(6*n + 5) = A133739(6*n + 5) = A232356(6*n + 5) = A134077(3*n + 2) = 6 * a(n). A125514(6*n + 5) = 24 * a(n). A134078(6*n + 5) = -36 * a(n). A186100(6*n + 5) = -72 * a(n). (End)
From Amiram Eldar, Dec 16 2022: (Start)
a(n) = A000203(A016969(n))/6.
Sum_{k=1..n} a(k) = (Pi^2/18) * n^2 + O(n*log(n)). (End)

A131943 Expansion of b(q) * b(q^2) in powers of q where b() is a cubic AGM theta function.

Original entry on oeis.org

1, -3, -3, 15, -3, -18, 15, -24, -3, 69, -18, -36, 15, -42, -24, 90, -3, -54, 69, -60, -18, 120, -36, -72, 15, -93, -42, 231, -24, -90, 90, -96, -3, 180, -54, -144, 69, -114, -60, 210, -18, -126, 120, -132, -36, 414, -72, -144, 15, -171, -93, 270, -42, -162
Offset: 0

Views

Author

Michael Somos, Jul 30 2007

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 3*q - 3*q^2 + 15*q^3 - 3*q^4 - 18*q^5 + 15*q^6 - 24*q^7 - 3*q^8 +...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 84, Eq. (32.65).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(6), 2), 54); A[1] - 3*A[2] - 3*A[3]; /* Michael Somos, Aug 30 2014 */
    
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^3 QPochhammer[ q^2]^3 / (QPochhammer[ q^3] QPochhammer[ q^6]), {q, 0, n}]; (* Michael Somos, Nov 21 2013 *)
    a[ n_] := If[ n < 1, Boole[n == 0], -3 Sum[ d {0, 1, 0, -2, 0, 1}[[ Mod[ d, 6] + 1]], {d, Divisors @ n}]]; (* Michael Somos, Nov 11 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, -3 * sumdiv(n, d, d * ((d%6==1) + (d%6==5) - 2 * (d%6==3))))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^2 + A))^3 / (eta(x^3 + A) * eta(x^6 + A)), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); -3 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 1, p==3, 4 - 3^(e+1), (p^(e+1) - 1) / (p - 1) )))}; /* Michael Somos, Nov 21 2013 */
    
  • Sage
    A = ModularForms( Gamma0(6), 2, prec=54) . basis();  A[0] - 3*A[1] - 3*A[2]; # Michael Somos, Nov 21 2013

Formula

Expansion of eta(q)^3 * eta(q^2)^3 / (eta(q^3) * eta(q^6)) in powers of q.
Euler transform of period 6 sequence [ -3, -6, -2, -6, -3, -4, ...].
a(n) = -3 * b(n) where b() is multiplicative with b(2^e) = 1, b(3^e) = 4 - 3^(e+1), b(p^e) = (p^(e+1) - 1) / (p - 1) if p>3. - Michael Somos, Nov 21 2013
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 54 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A121443.
G.f.: Product_{k>0} ((1 - x^k) * (1 - x^(2*k)))^3 / ((1 - x^(3*k)) * (1 - x^(6*k))).
G.f.: 1 - 3 * (Sum_{k>0} (6*k - 1) * x^(6*k - 1) / (1 - x^(6*k - 1)) - 2*(6*k - 5) * x^(6*k - 3) / (1 - x^(6*k - 3)) + (6*k - 5) * x^(6*k - 5) / (1 -x^(6*k - 5))).
a(n) = a(2*n). a(n) = -3 * A131944(n) unless n=0. a(3^n) = 3 * A168611(n+1). a(2*n + 1) = -3 * A134077(n). - Michael Somos, Nov 21 2013

A133739 Expansion of q * (psi(q^6) / psi(q^3))^3 * phi(q)^5 / psi(q) in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 9, 31, 45, 6, -45, 8, 117, 121, 54, 12, -9, 14, 72, 186, 261, 18, -207, 20, 270, 248, 108, 24, 63, 31, 126, 391, 360, 30, -270, 32, 549, 372, 162, 48, -171, 38, 180, 434, 702, 42, -360, 44, 540, 726, 216, 48, 207, 57, 279, 558, 630, 54, -693, 72, 936, 620
Offset: 1

Views

Author

Michael Somos, Oct 06 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + 9*q^2 + 31*q^3 + 45*q^4 + 6*q^5 - 45*q^6 + 8*q^7 + 117*q^8 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(12), 2), 58); A[2] + 9*A[3] + 31*A[4] + 45*A[5]; /* Michael Somos, Oct 30 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ 2 (EllipticTheta[ 2, 0, x^3] / EllipticTheta[ 2, 0, x^(3/2)])^3 (EllipticTheta[ 3, 0, x]^5 / EllipticTheta[ 2, 0, x^(1/2)]), {x, 0, n}]; (* Michael Somos, Oct 30 2015 *)
    QP=QPochhammer; CoefficientList[Series[QP[q^2]^23*QP[q^3]^3*QP[q^12]^6/( QP[q]^9*QP[q^4]^10*QP[q^6]^9), {q,0,50}],q] (* G. C. Greubel, Nov 16 2018 *)
  • PARI
    {a(n) = my(A); if ( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^23 * eta(x^3 + A)^3 * eta(x^12 + A)^6 / (eta(x + A)^9 * eta(x^4 + A)^10 * eta(x^6 + A)^9), n))};
    

Formula

Expansion of eta(q^2)^23 * eta(q^3)^3 * eta(q^12)^6 / (eta(q)^9 * eta(q^4)^10 * eta(q^6)^9) in powers of q.
Euler transform of period 12 sequence [ 9, -14, 6, -4, 9, -8, 9, -4, 6, -14, 9, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 18 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A134078.
G.f.: f(x) + 6 * f(x^2) + 27 * f(x^3) + 20 * f(x^4) - 162 * f(x^6) + 108 * f(x^12) where f() is the g.f. of A000203.
a(4*n + 2) = 9 * A134077(n). a(6*n + 5) = 6 * A098098(n).

A214456 Expansion of b(q^2) * (b(q) + 2 * b(q^4)) / 3 in powers of q where b() is a cubic AGM theta function.

Original entry on oeis.org

1, -1, -3, 5, -3, -6, 15, -8, -3, 23, -18, -12, 15, -14, -24, 30, -3, -18, 69, -20, -18, 40, -36, -24, 15, -31, -42, 77, -24, -30, 90, -32, -3, 60, -54, -48, 69, -38, -60, 70, -18, -42, 120, -44, -36, 138, -72, -48, 15, -57, -93, 90, -42, -54, 231, -72, -24, 100
Offset: 0

Views

Author

Michael Somos, Jul 18 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 - q - 3*q^2 + 5*q^3 - 3*q^4 - 6*q^5 + 15*q^6 - 8*q^7 - 3*q^8 + 23*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (9 EllipticTheta[ 3, 0, q^3]^4 - EllipticTheta[ 3, 0, q]^4) / 8, {q, 0, n}]
    a[ n_] := SeriesCoefficient[ QPochhammer[q^2]^4 QPochhammer[-q^3, q^6]^3 /QPochhammer[-q, q^2], {q, 0, n}]
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -q, q^2] QPochhammer[ -q^3, q^6])^3 EllipticTheta[ 2, 0, (-q)^(1/2)]^4 / (16 (-q)^(1/2)), {q, 0, n}]
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A)^2 * eta(x^4 + A) * eta(x^6 + A)^6 / ( eta(x^3 + A) * eta(x^12 + A))^3, n))}
    
  • PARI
    {a(n) = if( n<1, n==0, -sigma(n) + if( n%3==0, 9 * sigma(n/3)) + if( n%4==0, 4 * sigma(n/4)) + if( n%12==0, -36 * sigma(n/12)))}
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); - prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 3, if( p==3, 4 - 3^(e+1), (p^(e+1) - 1) / (p - 1))))))}

Formula

Expansion of (9 * phi(q^3)^4 - phi(q)^4) / 8 = phi(q) * (psi(-q) * chi(q^3))^3 = psi(-q)^4 * (chi(q) * chi(q^3))^3 in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of eta(q) * eta(q^2)^2 * eta(q^4) * eta(q^6)^6 / ( eta(q^3) * eta(q^12))^3 in powers of q.
Euler transform of period 12 sequence [ -1, -3, 2, -4, -1, -6, -1, -4, 2, -3, -1, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 36 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A214361.
a(n) = -b(n) where b() is multiplicative with b(2^e) = 3 if e>0, b(3^e) = 4 - 3^(e+1), b(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
G.f.: Product_{k>0} (1 - x^(2*k))^4 * (1 + x^(6*k-3))^3 / (1 + x^(2*k-1)).
a(n) = (-1)^n * A118271(n). a(2*n) = a(4*n) = A131943(n). a(2*n + 1) = -A134077(n).

A226139 Expansion of b(-q) * b(q^2) in powers of q where b() is a cubic AGM theta function.

Original entry on oeis.org

1, 3, -3, -15, -3, 18, 15, 24, -3, -69, -18, 36, 15, 42, -24, -90, -3, 54, 69, 60, -18, -120, -36, 72, 15, 93, -42, -231, -24, 90, 90, 96, -3, -180, -54, 144, 69, 114, -60, -210, -18, 126, 120, 132, -36, -414, -72, 144, 15, 171, -93, -270, -42, 162, 231, 216
Offset: 0

Views

Author

Michael Somos, May 27 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 21 of the 126 eta-quotients listed in Table 1 of Williams 2012.

Examples

			1 + 3*q - 3*q^2 - 15*q^3 - 3*q^4 + 18*q^5 + 15*q^6 + 24*q^7 - 3*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], - 3 (-1)^n Sum[ d {0, 1, 0, -2, 0, 1}[[Mod[ d, 6] + 1]], {d, Divisors @n}]]
    a[ n_] := If[ n < 2, Boole[n == 0] + 3 Boole[n == 1], 3 Times @@ (Which[ # == 2, -1, # == 3, 4 - 3 #^#2, True, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger[n])]
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q^2]^3 / EllipticTheta[ 4, 0, q^6] EllipticTheta[ 2, 0, q^(1/2)]^3 / EllipticTheta[ 2, 0, q^(3/2)] / 4, {q, 0, n}]
  • PARI
    {a(n) = if( n<1, n==0, -3 * (-1)^n * sumdiv( n, d, d * [0, 1, 0, -2, 0, 1][d%6 + 1]))}
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); 3 * prod( k= 1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, -1, if( p==3, 4 - p^(e+1), (p^(e+1) - 1) / (p - 1))))))}
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^12 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^6 + A)^4), n))}

Formula

Expansion of = b(q^2) * (2 * b(q^4) - b(q)) = b(q^2)^4 / (b(q) * b(q^4)) in powers of q where b() is a cubic AGM function.
Expansion of (a(q) + a(q^2)) * (a(q^2) - 2 * a(q^4)) / 2 in powers of q where a() is a cubic AGM theta function.
Expansion of (psi(q)^3 / psi(q^3)) * (phi(-q^2)^3 / phi(-q^6)) in power of q where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q^2)^12 * eta(q^3) * eta(q^12) / (eta(q)^3 * eta(q^4)^3 * eta(q^6)^4) in powers of q.
a(n) = 3 * b(n) where b(n) is multiplicative and b(2^e) = -1, b(3^e) = 4 - 3^(e+1), b(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 108 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A226132.
Euler transform of period 12 sequence [ 3, -9, 2, -6, 3, -6, 3, -6, 2, -9, 3, -4, ...].
G.f.: 1 + 3 * (Sum_{k>0} x^k / (1 - (-x)^k)^2 - 9 * x^(3*k) / (1 - (-x)^(3*k))^2).
G.f.: 1 + 3 * Sum_{k>0 not 2|k} k * (x^k * x^k / (1 + x^(2*k)) - 9 * x^(3*k) / (1 + x^(3*k))).
G.f.: Product_{k>0} (1 - x^(2*k))^12 * (1 + x^(6*k)) / ( (1 - x^k)^3 * (1 + x^(3*k))^3 * (1 - x^(3*k))^2 * (1 - x^(4*k))^3 ).
a(n) = (-1)^n * A131943(n). a(2*n) = A131943(n). a(2*n + 1) = 3 * A134077(n).

A321528 Expansion of b(x)^2 * b(x^2) / b(x^4) where b is a cubic AGM theta function.

Original entry on oeis.org

1, -6, 6, 30, -66, -36, 186, -48, -210, 138, 36, -72, 114, -84, 48, 180, -498, -108, 726, -120, -396, 240, 72, -144, -30, -186, 84, 462, -528, -180, 1116, -192, -1074, 360, 108, -288, 654, -228, 120, 420, -1260, -252, 1488, -264, -792, 828, 144, -288, -318
Offset: 0

Views

Author

Michael Somos, Nov 12 2018

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Number 64 of the 126 eta-quotients listed in Table 1 of Williams 2012.

Examples

			G.f. = 1 - 6*x + 6*x^2 + 30*x^3 - 66*x^4 - 36*x^5 + 186*x^6 - 48*x^7 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(12), 2), 49); A[1] - 6*A[2] + 6*A[3] + 30*A[4] - 66*A[5];
  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, x] EllipticTheta[ 4, 0, x^2])^3 / ( EllipticTheta[ 4, 0, x^3] EllipticTheta[ 4, 0, x^6]), {x, 0, n}];
    a[ n_] := With[ {s = If[ FractionalPart @ # > 0, 0, DivisorSigma[1, #]] &}, If[ n < 1, Boole[n==0], -6 (s[n/1] - 4 s[n/2] - 9 s[n/3] + 16 s[n/4])]];
    a[ n_] := If[ n < 1, Boole[n==0], -6 Sum[ d {1, -1, -2, 3, 1, -4, 1, 3, -2, -1, 1, 0}[[Mod[d, 12, 1]]], {d, Divisors[n]}]];
  • PARI
    {a(n) = if( n<1, n==0, -6 * sumdiv( n, d, d * [0, 1, -1, -2, 3, 1, -4, 1, 3, -2, -1, 1][d%12 + 1]))};
    
  • PARI
    {a(n) = my(s = x -> if(frac(x), 0, sigma(x))); if( n<1, n==0, -6 * (s(n/1) - 4*s(n/2) - 9*s(n/3) + 16*s(n/4)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^6 * eta(x^2 + A)^3 * eta(x^12 + A) / (eta(x^3 + A)^2 * eta(x^4 + A)^3 * eta(x^6 + A)), n))};
    

Formula

Expansion of phi(-x) * phi(-x^2)^3 / (phi(-x^3) * phi(-x^6)) in powers of x where phi() is a Ramanujan theta function.
Expansion of eta(q)^6 * eta(q^2)^3 * eta(q^12) / (eta(q^3)^2 * eta(q^4)^3 * eta(q^6)) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 864 (t / i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A321527.
a(n) = -6 * (s(n/1) - 4*s(n/2) - 9*s(n/3) + 16*s(n/4)) if n>0, where s(x) = sum of divisors of x for integer x else 0.
a(2*n + 1) = -6 * A134077(n). a(6*n + 5) = -a(12*n + 10) = -36 * A098098(n).

A329651 Expansion of x * (psi(x^6) / psi(-x^3))^3 * phi(-x)^5 / psi(-x) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

0, 1, -9, 31, -45, 6, 45, 8, -117, 121, -54, 12, 9, 14, -72, 186, -261, 18, 207, 20, -270, 248, -108, 24, -63, 31, -126, 391, -360, 30, 270, 32, -549, 372, -162, 48, 171, 38, -180, 434, -702, 42, 360, 44, -540, 726, -216, 48, -207, 57, -279, 558, -630, 54, 693
Offset: 0

Views

Author

Michael Somos, Nov 18 2019

Keywords

Comments

Number 105 of the 126 eta-quotients listed in Table 1 of Williams 2012.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 144 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A328788.

Examples

			G.f. = x - 9*x^2 + 31*x^3 - 45*x^4 + 6*x^5 + 45*x^6 + 8*x^7 - 117*x^8 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(12), 2), 52); A[2] - 9*A[3] + 31*A[4] - 45*A[5];
  • Mathematica
    a[ n_] := SeriesCoefficient[ 1/2 (EllipticTheta[ 2, 0, x^3] / EllipticTheta[ 2, Pi/4, x^(3/2)])^3 EllipticTheta[ 4, 0, x]^5 / EllipticTheta[ 2, Pi/4, x^(1/2)], {x, 0, n}] // PowerExpand;
  • PARI
    {a(n) = my(s = x -> if(frac(x), 0, sigma(x))); if( n<1, 0, s(n) - 12*s(n/2) + 27*s(n/3) - 16*s(n/4))};
    
  • PARI
    {a(n) = my(A); if( n < 1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^9 * eta(x^12 + A)^3 / (eta(x^2 + A)^4 * eta(x^3 + A)^3 * eta(x^4 + A)), n))};
    

Formula

Euler transform of period 12 sequence [-9, -5, -6, -4, -9, -2, -9, -4, -6, -5, -9, -4, ...].
Expansion of x * phi(-x)^5 / psi(-x) * (f(-x^12) / f(-x^3))^3 in powers of x where phi(), psi(), f() are Ramanujan theta functions.
Expansion of eta(q)^9 * eta(q^12)^3 / (eta(q^2)^4 * eta(q^3)^3 * eta(q^4)) in powers of q.
a(n) = s(n) - 12*s(n/2) + 27*s(n/3) - 16*s(n/4) if n>0 where s(x) = sum of divisors of x for integer x else 0.
a(n) = -(-1)^n * A133739(n). a(4*n + 2) = -9 * A134077(n). a(6*n + 5) = 6 * A098098(n).
Showing 1-7 of 7 results.