cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A121443 Sum of divisors d of n which are odd and n/d is not divisible by 3.

Original entry on oeis.org

1, 1, 3, 1, 6, 3, 8, 1, 9, 6, 12, 3, 14, 8, 18, 1, 18, 9, 20, 6, 24, 12, 24, 3, 31, 14, 27, 8, 30, 18, 32, 1, 36, 18, 48, 9, 38, 20, 42, 6, 42, 24, 44, 12, 54, 24, 48, 3, 57, 31, 54, 14, 54, 27, 72, 8, 60, 30, 60, 18, 62, 32, 72, 1, 84, 36, 68, 18, 72, 48, 72, 9, 74, 38, 93, 20, 96, 42
Offset: 1

Views

Author

Michael Somos, Jul 30 2006, Apr 18 2007

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q + q^2 + 3*q^3 + q^4 + 6*q^5 + 3*q^6 + 8*q^7 + q^8 + 9*q^9 + 6*q^10 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 86, Eq. (33.124).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(6), 2), 80); A[2] + A[3]; /* Michael Somos, Jun 12 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ d Mod[ d, 2] Boole[ Mod[ n/d, 3] > 0], {d, Divisors @n}]]; (* Michael Somos, Jun 12 2014 *)
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^3] QPochhammer[ q^6])^3 / (QPochhammer[ q] QPochhammer[ q^2]), {q, 0, n}]; (* Michael Somos, Jun 12 2014 *)
    f[p_, e_] := Which[p == 2, 1, p == 3, p^e, p > 3, (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 12 2020 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, (d%2) * (n/d%3 > 0) * d))};
    
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^6 + A))^3 / (eta(x + A) * eta(x^2 + A)), n))};
    
  • Sage
    A = ModularForms( Gamma0(6), 2, prec=80) . basis(); A[1] + A[2]; # Michael Somos, Jun 12 2014
    

Formula

Expansion of c(q) * c(q^2) / 9 where c(q) is a cubic AGM theta function.
Euler transform of period 6 sequence [ 1, 2, -2, 2, 1, -4, ...].
Expansion of (eta(q^3) * eta(q^6))^3 / (eta(q) * eta(q^2)) in powers of q.
Multiplicative with a(2^e) = 1, a(3^e) = 3^e, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^4 - u*w * (u-2*v) * (v-2*w).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^3*u6 + 2*u2^3*u3 + 3*u2^2*u3^2 + 6*u1*u2*u3*u6 + 48*u2^2*u6^2 - 3*u1^2*u2*u6 - 3*u1*u2*u3^2 - 24*u2^2*u3*u6 - 30*u1*u2*u6^2. - Michael Somos, Apr 18 2007
G.f.: x * Product_{k>0} ((1 - x^(3*k)) * (1 - x^(6*k)))^3 / ((1 - x^k) * (1 - x^(2*k))) = Sum_{k>0} k * x^k * (1 - x^k) / (1 + x^(3*k)).
a(2*n) = a(n), a(2*n + 1) = A185717(n). a(3*n) = 3*a(n). a(6*n + 5) = 6 * A098098(n).
G.f.: Sum_{n = -inf..inf} (-1)^n*x^(3*n+1)/(1 - x^(3*n+1))^2. Cf. A124340. - Peter Bala, Jan 06 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/27 = 0.3655409... (A291050). - Amiram Eldar, Nov 17 2022
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-2^(1-s)-3^(-s)+2^(1-s)*3^(-s)). - Amiram Eldar, Jan 03 2023

A214361 Expansion of c(q^2) * (c(q) + 2 * c(q^4)) / 9 in powers of q where c() is a cubic AGM theta function.

Original entry on oeis.org

1, 3, 3, 3, 6, 9, 8, 3, 9, 18, 12, 9, 14, 24, 18, 3, 18, 27, 20, 18, 24, 36, 24, 9, 31, 42, 27, 24, 30, 54, 32, 3, 36, 54, 48, 27, 38, 60, 42, 18, 42, 72, 44, 36, 54, 72, 48, 9, 57, 93, 54, 42, 54, 81, 72, 24, 60, 90, 60, 54, 62, 96, 72, 3, 84, 108, 68, 54
Offset: 1

Views

Author

Michael Somos, Jul 18 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
b(n) = 6*a(n) is the number of solutions in integers to n = x^2 + y^2 + z^2 + w^2 where x + y + z is not divisible by 3. - Michael Somos, Jun 23 2018

Examples

			G.f. = q + 3*q^2 + 3*q^3 + 3*q^4 + 6*q^5 + 9*q^6 + 8*q^7 + 3*q^8 + 9*q^9 + 18*q^10 + ...
a(1) = 1, b(1) = 6 with solutions (w, x, y, z) = {(0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)} and their negatives. - _Michael Somos_, Jun 23 2018
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^4 - EllipticTheta[ 3, 0, q^3]^4) / 8, {q, 0, n}];
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -q, q^2] QPochhammer[ -q^3, q^6])^3 EllipticTheta[ 2, 0, (-q)^(3/2)]^4 / (-16 (-q)^(1/2)), {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * eta(x^3 + A) * eta(x^6 + A)^2 * eta(x^12 + A) / ( eta(x + A) * eta(x^4 + A))^3, n))};
    
  • PARI
    {a(n) = if( n<1, 0, sigma(n) + if( n%3==0, -1 * sigma(n/3)) + if( n%4==0, -4 * sigma(n/4)) + if( n%12==0, +4 * sigma(n/12)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 3, p==3, 3^e, (p^(e+1) - 1) / (p - 1))))};

Formula

Expansion of (phi(q)^4 - phi(q^3)^4) / 8 = q * phi(q^3) * (chi(q) * psi(-q^3))^3 = q * psi(-q^3)^4 * (chi(q) * chi(q^3))^3 in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of eta(q^2)^6 * eta(q^3) * eta(q^6)^2 * eta(q^12) / ( eta(q) * eta(q^4))^3 in powers of q.
Euler transform of period 12 sequence [3, -3, 2, 0, 3, -6, 3, 0, 2, -3, 3, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 4 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A214456.
a(n) is multiplicative with a(2^e) = 3 if e>0, a(3^e) = 3^e, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
G.f.: x * Product_{k>0} (1 + (-x)^(3*k)) * (1 - x^(6*k))^4 / ( 1 + (-x)^k)^3.
a(n) = -(-1)^n * A124449(n). a(3*n) = 3*a(n). a(2*n) = a(4*n) = 3 * A121443(n). a(2*n + 1) = A185717(n).
From Amiram Eldar, Sep 12 2023: (Start)
Dirichlet g.f.: (1 - 1/2^(2*s-2)) * (1 - 1/3^s) * zeta(s-1) * zeta(s).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/18 = 0.548311... (A086463). (End)

A226132 Expansion of - c(-q) * c(q^2) / 9 in powers of q where c() is a cubic AGM theta function.

Original entry on oeis.org

1, -1, 3, -1, 6, -3, 8, -1, 9, -6, 12, -3, 14, -8, 18, -1, 18, -9, 20, -6, 24, -12, 24, -3, 31, -14, 27, -8, 30, -18, 32, -1, 36, -18, 48, -9, 38, -20, 42, -6, 42, -24, 44, -12, 54, -24, 48, -3, 57, -31, 54, -14, 54, -27, 72, -8, 60, -30, 60, -18, 62, -32, 72
Offset: 1

Views

Author

Michael Somos, May 27 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 91 of the 126 eta-quotients listed in Table 1 of Williams 2012.

Examples

			G.f. = q - q^2 + 3*q^3 - q^4 + 6*q^5 - 3*q^6 + 8*q^7 - q^8 + 9*q^9 - 6*q^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ If[ OddQ[d] && ! Divisible[ n/d, 3], -d (-1)^(n/d), 0], {d, Divisors[ n]}]];
    a[ n_] := If[ n < 2, Boole[n == 1], Times @@ (Which[ # == 2, -1, # == 3, #^#2, True, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger[n])];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^3]^3 / EllipticTheta[ 3, 0, q] EllipticTheta[ 2, 0, I q^(3/2)]^3 / EllipticTheta[ 2, 0, I q^(1/2)] / (4 (-1)^(1/4)), {q, 0, n}];
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, if(d%2 && (n/d)%3, -d * (-1)^(n/d))))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k= 1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, -1, if( p==3, p^e, (p^(e+1) - 1) / (p - 1))))))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^12 / (eta(x^2 + A)^4 * eta(x^3 + A)^3 * eta(x^12 + A)^3), n))};

Formula

Expansion of (a(q) - a(q^2)) * (a(q^2) + 2 * a(q^4)) / 18 = c(q^2)^4 / (9 * c(q) * c(q^4)) = (b(-q) * b(q^2) - a(-q) * a(q^2)) / 9 in powers of q where a(), b(), c(q) are cubic AGM theta functions.
Expansion of q * (phi(q^3)^3 / phi(q)) * (ps(-q^3)^3 / psi(-q)) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q) * eta(q^4) * eta(q^6)^12 / (eta(q^2)^4 * eta(q^3)^3 * eta(q^12)^3) in powers of q.
Euler transform of period 12 sequence [ -1, 3, 2, 2, -1, -6, -1, 2, 2, 3, -1, -4, ...].
Multiplicative with a(2^e) = -1 if e>0, a(3^e) = 3^e, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 4/3 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A226139.
G.f.: Sum_{k>0 not 3|k} x^k / (1 - (-x)^k)^2 = Sum_{k>0 not 2|k} k * x^k * (1 - x^k) / (1 + x^(3*k)).
G.f.: x * Product_{k>0} (1 - x^k) * (1 - x^(4*k)) * (1 - x^(3*k))^6 * (1 + x^(3*k))^9 / ((1 - x^(2*k))^4 * (1 + x^(6*k))^3).
a(2*n) = - A121443(n). a(2*n + 1) = A185717(n).
a(n) = -(-1)^n * A121443(n). Convolution of A113447 and A113973.
From Amiram Eldar, Sep 12 2023: (Start)
Dirichlet g.f.: (1 - 1/2^(s-1))^2 * (1 - 1/3^s) * zeta(s-1) * zeta(s).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/54 = 0.18277045... . (End)
Showing 1-3 of 3 results.