cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A118284 Conjectured largest number that is not the sum of three generalized (2n+1)-gonal numbers; bisection of A118282.

Original entry on oeis.org

0, 0, 307, 2027, 18180, 10795, 87740, 75150, 122818, 146970, 585513
Offset: 1

Views

Author

T. D. Noe, Apr 21 2006; revised Apr 23 2006

Keywords

Crossrefs

A118283 Conjectured number of numbers that are not the sum of three generalized n-gonal numbers, or -1 if infinite.

Original entry on oeis.org

0, -1, 0, 0, 4, -1, 26, 45, 94, -1, 196, -1, 370, -1, 641, 743, 999, -1, 1537, 1429, 2619
Offset: 3

Views

Author

T. D. Noe, Apr 21 2006

Keywords

Comments

See A118282 for the conjectured largest number that is not the sum of three generalized n-gonal numbers. For n=7, only four numbers are not representable: 10, 16, 76 and 307.

Crossrefs

A118286 Numbers n such that n == 0 (mod 4) or n == 2 (mod 12).

Original entry on oeis.org

2, 4, 8, 12, 14, 16, 20, 24, 26, 28, 32, 36, 38, 40, 44, 48, 50, 52, 56, 60, 62, 64, 68, 72, 74, 76, 80, 84, 86, 88, 92, 96, 98, 100, 104, 108, 110, 112, 116, 120, 122, 124, 128, 132, 134, 136, 140, 144, 146, 148, 152, 156, 158, 160, 164, 168, 170, 172, 176, 180, 182
Offset: 1

Views

Author

T. D. Noe, Apr 23 2006

Keywords

Comments

Except for n=2, conjectured n such that A118278(n)=-1 and A118282(n)=-1; n such that there is an infinite set of numbers not representable as the sum of three n-gonal numbers or three generalized n-gonal numbers.
The difference between two consecutive terms follow the 4-period: (2, 4, 4, 2). - Bernard Schott, Feb 25 2019

Crossrefs

Programs

  • GAP
    Filtered([1..190],n->n mod 4=0 or n mod 12=2); # Muniru A Asiru, Feb 22 2019
  • Magma
    [Round((3*n-1) + (Sqrt(-1))^n*(1+(-1)^n)/2): n in [1..70]]; // G. C. Greubel, Feb 21 2019
    
  • Maple
    select(n->modp(n,4)=0 or modp(n,12)=2,[$1..190]); # Muniru A Asiru, Feb 22 2019
  • Mathematica
    Union[4*Range[50], 2+12*Range[16]]
  • PARI
    a(n) = (-2+(-I)^n+I^n+6*n)/2 \\ Colin Barker, Oct 19 2015
    
  • PARI
    Vec(2*x*(1+2*x^2)/((1+x^2)*(1-x)^2) + O(x^70)) \\ Colin Barker, Oct 19 2015
    
  • PARI
    for(n=1, 1e3, if(n%4 == 0 || n%12 == 2, print1(n", "))) \\ Altug Alkan, Oct 19 2015
    
  • Sage
    [(3*n-1) + I^n*(1+(-1)^n)/2 for n in (1..70)] # G. C. Greubel, Feb 21 2019
    

Formula

G.f.: 2*x*(1+2*x^2) / ( (1+x^2)*(1-x)^2 ). - R. J. Mathar, Dec 02 2011
a(n) = 2*A047237(n+1) = 3*n - 1 + cos(n*Pi/2). - R. J. Mathar, Dec 02 2011
a(n) = (-2 + (-i)^n + i^n + 6*n)/2, where i = sqrt(-1). - Colin Barker, Oct 19 2015
a(n) = (6*n - 2 + (1 + (-1)^n)*(-1)^(n*(n-1)/2))/2. - Guenther Schrack, Feb 21 2019
E.g.f.: cos(x) + (3*x-1)*exp(x). - G. C. Greubel, Feb 21 2019
Showing 1-3 of 3 results.