A118312 Number of squares on infinite chessboard that a knight can reach in n moves from a fixed square.
1, 8, 33, 76, 129, 196, 277, 372, 481, 604, 741, 892, 1057, 1236, 1429, 1636, 1857, 2092, 2341, 2604, 2881, 3172, 3477, 3796, 4129, 4476, 4837, 5212, 5601, 6004, 6421, 6852, 7297, 7756, 8229, 8716, 9217, 9732, 10261, 10804, 11361, 11932, 12517, 13116, 13729, 14356, 14997, 15652
Offset: 0
Examples
a(2)=33 because knight in 2 moves from square (0,0) can reach one of the following squares: {{0,0}, {-4,-2}, {-4,0}, {-4,2}, {-3,-3}, {-3,-1}, {-3,1}, {-3,3}, {-2,-4}, {-2,0}, {-2,4}, {-1,-3}, {-1,-1}, {-1,1}, {-1,3}, {0,-4}, {0,-2}, {0,2}, {0,4}, {1,-3}, {1,-1}, {1,1}, {1,3}, {2,-4}, {2,0}, {2,4}, {3,-3}, {3,-1}, {3,1}, {3,3}, {4,-2}, {4,0}, {4,2}}.
References
- M. Petkovic, Mathematics and Chess, Dover Publications (2003), Problem 3.11.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Mordechai Katzman, Knight's moves on an infinite board
- Mordechai Katzman, Counting monomials, arXiv:math/0504113 [math.AC], 2005.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[1, 8, 33, 76, 129, 196, 277]; [n le 7 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jul 09 2012
-
Mathematica
Table[ -3 + 4*n + 7*n^2 + 4*Sign[(n - 2)(n - 1)], {n, 0, 100}] CoefficientList[Series[(1+5*x+12*x^2-8*x^4+4*x^5)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 09 2012 *) Join[{1,8,33},LinearRecurrence[{3,-3,1},{76,129,196},50]] (* Harvey P. Dale, Dec 05 2014 *)
-
PARI
a(n)=7*n^2 + 4*n - 3 + 4*sign((n-2)*(n-1)) \\ Charles R Greathouse IV, Feb 09 2017
Formula
a(n) = -3 + 4*n + 7*n^2 + 4*sign((n-2)*(n-1)).
G.f.: (1 + 5*x + 12*x^2 - 8*x^4 + 4*x^5)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 09 2012
For n >= 3, a(n) = A005892(n).
E.g.f.: exp(x)*(1 + 11*x + 7*x^2) - 2*x*(x + 2). - Stefano Spezia, Jul 27 2022
Extensions
Link updated by Tristan Miller, Jun 13 2013
Comments