A118340 Pendular triangle, read by rows, where row n is formed from row n-1 by the recurrence: if n > 2k, T(n,k) = T(n,n-k) + T(n-1,k), else T(n,k) = T(n,n-1-k) + T(n-1,k), for n>=k>0, with T(n,0) = 1 and T(n,n) = 0^n.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 5, 1, 0, 1, 5, 15, 20, 6, 1, 0, 1, 6, 22, 48, 28, 7, 1, 0, 1, 7, 30, 85, 113, 37, 8, 1, 0, 1, 8, 39, 132, 282, 169, 47, 9, 1, 0, 1, 9, 49, 190, 519, 688, 237, 58, 10, 1, 0, 1, 10, 60, 260, 837, 1762, 1074, 318, 70, 11, 1, 0
Offset: 0
Examples
Row 6 equals the pendular sums of row 5: [1, 4, 9, 5, 1, 0], where the sums proceed as follows: [1, __, __, __, __, __], T(6,0) = T(5,0) = 1; [1, __, __, __, __, 1], T(6,5) = T(6,0) + T(5,5) = 1 + 0 = 1; [1, 5, __, __, __, 1], T(6,1) = T(6,5) + T(5,1) = 1 + 4 = 5; [1, 5, __, __, 6, 1], T(6,4) = T(6,1) + T(5,4) = 5 + 1 = 6; [1, 5, 15, __, 6, 1], T(6,2) = T(6,4) + T(5,2) = 6 + 9 = 15; [1, 5, 15, 20, 6, 1], T(6,3) = T(6,2) + T(5,3) = 15 + 5 = 20; [1, 5, 15, 20, 6, 1, 0] finally, append a zero to obtain row 6. Triangle begins: 1; 1, 0; 1, 1, 0; 1, 2, 1, 0; 1, 3, 4, 1, 0; 1, 4, 9, 5, 1, 0; 1, 5, 15, 20, 6, 1, 0; 1, 6, 22, 48, 28, 7, 1, 0; 1, 7, 30, 85, 113, 37, 8, 1, 0; 1, 8, 39, 132, 282, 169, 47, 9, 1, 0; 1, 9, 49, 190, 519, 688, 237, 58, 10, 1, 0; 1, 10, 60, 260, 837, 1762, 1074, 318, 70, 11, 1, 0; 1, 11, 72, 343, 1250, 3330, 4404, 1568, 413, 83, 12, 1, 0; ... Central terms are T(2*n,n) = A108447(n); semi-diagonals form successive self-convolutions of the central terms: T(2*n+1,n) = A118341(n) = [A108447^2](n), T(2*n+2,n) = A118342(n) = [A108447^3](n).
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened(Rows n = 0..20 from Paul D. Hanna)
Crossrefs
Programs
-
Magma
function T(n,k,p) if k lt 0 or n lt k then return 0; elif k eq 0 then return 1; elif k eq n then return 0; elif n gt 2*k then return T(n,n-k,p) + T(n-1,k,p); else return T(n,n-k-1,p) + p*T(n-1,k,p); end if; return T; end function; [T(n,k,1): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2021
-
Mathematica
T[n_, k_, p_]:= T[n,k,p] = If[n
G. C. Greubel, Feb 17 2021 *) -
PARI
{T(n,k) = if(n
2*k, T(n-1,k) + T(n,n-k), T(n-1,k) + T(n,n-1-k)))))} for(n=0,12, for(k=0,n, print1(T(n,k),", "));print("")) -
Sage
@CachedFunction def T(n, k, p): if (k<0 or n
2*k): return T(n,n-k,p) + T(n-1,k,p) else: return T(n, n-k-1, p) + p*T(n-1, k, p) flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 17 2021
Comments