cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A168030 Variant of pendular triangle A118340.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0
Offset: 0

Views

Author

Philippe Deléham, Nov 17 2009

Keywords

Comments

Replaced the sums (f(a,b) = a + b) by the operators f(a,b) = a^2 -a*b + b^2 in the construction of triangle in A118340.

Examples

			Triangle begins as:
  1;
  1, 0;
  1, 1, 0;
  1, 0, 1, 0;
  1, 1, 0, 1, 0;
  1, 0, 1, 1, 1, 0;
  1, 1, 1, 0, 0, 1, 0;
  1, 0, 0, 0, 0, 1, 1, 0;
  1, 1, 0, 1, 1, 1, 0, 1, 0;
  1, 0, 1, 0, 0, 1, 1, 1, 1, 0;
  1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0;
		

Crossrefs

Cf. A118340, A168148 (row sums).

Programs

  • Magma
    function t(n, k) // t = A118340
      if k lt 0 or k gt n then return 0;
      elif k eq 0 then return 1;
      elif n gt 2*k then return t(n, n-k) + t(n-1, k);
      else return t(n, n-k-1) + t(n-1, k);
      end if; return t;
    end function;
    T:= func< n,k | t(n,k) mod 2 >; // A168030
    [T(n,k): k in [0..n], n in [0..15]];
    
  • Mathematica
    t[n_, k_, p_]:= t[n, k, p]= If[k<0 || k>n, 0, If[k==0, 1, If[n<=2*k, t[n,n-k-1,p] +p*t[n-1,k,p], t[n,n-k,p] +t[n-1,k, p]]]]; (* A118340 *)
    T[n_, k_, p_]:= Mod[t[n,k,p], 2]; (* A168030 *)
    Table[T[n,k,1], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 12 2023 *)
  • SageMath
    @CachedFunction
    def t(n, k): # t = A118340
        if (k<0 or k>n): return 0
        elif (k==0): return 1
        elif (n>2*k): return t(n, n-k) + t(n-1, k)
        else: return t(n, n-k-1) + t(n-1, k)
    def A168030(n,k): return t(n,k)%2
    flatten([[A168030(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jan 12 2023

Formula

From G. C. Greubel, Jan 12 2023: (Start)
T(n, k) = A118340(n, k) mod 2.
Sum_{k=0..n} T(n, k) = A168148(n). (End)

A118345 Pendular triangle, read by rows, where row n is formed from row n-1 by the recurrence: if n > 2k, T(n,k) = T(n,n-k) + T(n-1,k), else T(n,k) = T(n,n-1-k) + 2*T(n-1,k), for n>=k>=0, with T(n,0) = 1 and T(n,n) = 0^n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 5, 1, 0, 1, 4, 11, 6, 1, 0, 1, 5, 18, 30, 7, 1, 0, 1, 6, 26, 70, 40, 8, 1, 0, 1, 7, 35, 121, 201, 51, 9, 1, 0, 1, 8, 45, 184, 487, 286, 63, 10, 1, 0, 1, 9, 56, 260, 873, 1445, 386, 76, 11, 1, 0, 1, 10, 68, 350, 1375, 3592, 2147, 502, 90, 12, 1, 0
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2006

Keywords

Comments

See A118340 for definition of pendular triangles and pendular sums.

Examples

			Row 6 equals the pendular sums of row 5:
  [1,  4, 11,  6,  1,  0], where the pendular sums proceed as follows:
  [1, __, __, __, __, __]: T(6,0) = T(5,0) = 1;
  [1, __, __, __, __,  1]: T(6,5) = T(6,0) + 2*T(5,5) = 1 + 2*0 = 1;
  [1,  5, __, __, __,  1]: T(6,1) = T(6,5) + T(5,1) = 1 + 4 = 5;
  [1,  5, __, __,  7,  1]: T(6,4) = T(6,1) + 2*T(5,4) = 5 + 2*1 = 7;
  [1,  5, 18, __,  7,  1]: T(6,2) = T(6,4) + T(5,2) = 7 + 11 = 18;
  [1,  5, 18, 30,  7,  1]: T(6,3) = T(6,2) + 2*T(5,3) = 18 + 2*6 = 30;
  [1,  5, 18, 30,  7,  1, 0] finally, append a zero to obtain row 6.
Triangle begins:
  1;
  1,  0;
  1,  1,  0;
  1,  2,  1,   0;
  1,  3,  5,   1,    0;
  1,  4, 11,   6,    1,    0;
  1,  5, 18,  30,    7,    1,    0;
  1,  6, 26,  70,   40,    8,    1,   0;
  1,  7, 35, 121,  201,   51,    9,   1,  0;
  1,  8, 45, 184,  487,  286,   63,  10,  1,  0;
  1,  9, 56, 260,  873, 1445,  386,  76, 11,  1, 0;
  1, 10, 68, 350, 1375, 3592, 2147, 502, 90, 12, 1, 0; ...
Central terms are T(2*n,n) = A118346(n);
semi-diagonals form successive self-convolutions of the central terms:
T(2*n+1,n) = A118347(n) = [A118346^2](n),
T(2*n+2,n) = A118348(n) = [A118346^3](n).
		

Crossrefs

Cf. A167763 (p=0), A118340 (p=1), this sequence (p=2), A118350 (p=3).

Programs

  • Magma
    function T(n,k,p)
      if k lt 0 or n lt k then return 0;
      elif k eq 0 then return 1;
      elif k eq n then return 0;
      elif n gt 2*k then return T(n,n-k,p) + T(n-1,k,p);
      else return T(n,n-k-1,p) + p*T(n-1,k,p);
      end if;
      return T;
    end function;
    [T(n,k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2021
  • Mathematica
    T[n_, k_, p_]:= T[n,k,p] = If[nG. C. Greubel, Feb 17 2021 *)
  • PARI
    T(n,k)=if(n2*k,T(n,n-k)+T(n-1,k),T(n,n-1-k)+2*T(n-1,k)))))
    
  • Sage
    @CachedFunction
    def T(n, k, p):
        if (k<0 or n2*k): return T(n,n-k,p) + T(n-1,k,p)
        else: return T(n, n-k-1, p) + p*T(n-1, k, p)
    flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 17 2021
    

Formula

T(2*n+m,n) = [A118346^(m+1)](n), i.e., the m-th lower semi-diagonal forms the self-convolution (m+1)-power of A118346.

A118350 Pendular triangle, read by rows, where row n is formed from row n-1 by the recurrence: if n > 2k, T(n,k) = T(n,n-k) + T(n-1,k), else T(n,k) = T(n,n-1-k) + 3*T(n-1,k), for n>=k>=0, with T(n,0)=1 and T(n,n)=0^n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 13, 7, 1, 0, 1, 5, 21, 42, 8, 1, 0, 1, 6, 30, 96, 54, 9, 1, 0, 1, 7, 40, 163, 325, 67, 10, 1, 0, 1, 8, 51, 244, 770, 445, 81, 11, 1, 0, 1, 9, 63, 340, 1353, 2688, 583, 96, 12, 1, 0, 1, 10, 76, 452, 2093, 6530, 3842, 740, 112, 13, 1, 0
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2006

Keywords

Comments

See definition of pendular triangle and pendular sums at A118340.

Examples

			Row 6 equals the pendular sums of row 5,
  [1,  4, 13,  7,  1,  0], where the sums proceed as follows:
  [1, __, __, __, __, __]: T(6,0) = T(5,0) = 1;
  [1, __, __, __, __,  1]: T(6,5) = T(6,0) + 3*T(5,5) = 1 + 3*0 = 1;
  [1,  5, __, __, __,  1]: T(6,1) = T(6,5) + T(5,1) = 1 + 4 = 5;
  [1,  5, __, __,  8,  1]: T(6,4) = T(6,1) + 3*T(5,4) = 5 + 3*1 = 8;
  [1,  5, 21, __,  8,  1]: T(6,2) = T(6,4) + T(5,2) = 8 + 13 = 21;
  [1,  5, 21, 42,  8,  1]: T(6,3) = T(6,2) + 3*T(5,3) = 21 + 3*7 = 42;
  [1,  5, 21, 42,  8,  1, 0] finally, append a zero to obtain row 6.
Triangle begins:
  1;
  1,  0;
  1,  1,  0;
  1,  2,  1,   0;
  1,  3,  6,   1,    0;
  1,  4, 13,   7,    1,     0;
  1,  5, 21,  42,    8,     1,     0;
  1,  6, 30,  96,   54,     9,     1,    0;
  1,  7, 40, 163,  325,    67,    10,    1,   0;
  1,  8, 51, 244,  770,   445,    81,   11,   1,   0;
  1,  9, 63, 340, 1353,  2688,   583,   96,  12,   1,  0;
  1, 10, 76, 452, 2093,  6530,  3842,  740, 112,  13,  1, 0;
  1, 11, 90, 581, 3010, 11760, 23286, 5230, 917, 129, 14, 1, 0; ...
Central terms are T(2*n,n) = A118351(n);
semi-diagonals form successive self-convolutions of the central terms:
T(2*n+1,n) = A118352(n) = [A118351^2](n),
T(2*n+2,n) = A118353(n) = [A118351^3](n).
		

Crossrefs

Cf. A167763 (p=0), A118340 (p=1), A118345 (p=2), this sequence (p=3).

Programs

  • Magma
    function T(n,k,p)
      if k lt 0 or n lt k then return 0;
      elif k eq 0 then return 1;
      elif k eq n then return 0;
      elif n gt 2*k then return T(n,n-k,p) + T(n-1,k,p);
      else return T(n,n-k-1,p) + p*T(n-1,k,p);
      end if;
      return T;
    end function;
    [T(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2021
  • Mathematica
    T[n_, k_, p_]:= T[n,k,p] = If[nG. C. Greubel, Feb 17 2021 *)
  • PARI
    T(n,k)=if(n2*k,T(n,n-k)+T(n-1,k),T(n,n-1-k)+3*T(n-1,k)))))
    
  • Sage
    @CachedFunction
    def T(n, k, p):
        if (k<0 or n2*k): return T(n,n-k,p) + T(n-1,k,p)
        else: return T(n, n-k-1, p) + p*T(n-1, k, p)
    flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 17 2021
    

Formula

T(2*n+m,n) = [A118351^(m+1)](n), i.e., the m-th lower semi-diagonal forms the self-convolution (m+1)-power of the central terms A118351.

A119369 Pendular trinomial triangle, read by rows of 2n+1 terms (n>=0), defined by the recurrence: if 0 < k < n, T(n,k) = T(n-1,k) + T(n,2n-1-k); otherwise, if n-1 < k < 2n-1, T(n,k) = T(n-1,k) + T(n,2n-2-k); with T(n,0)=T(n+1,2n)=1 and T(n+1,2n+1)=T(n+1,2n+2)=0.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 3, 2, 1, 0, 0, 1, 3, 6, 9, 7, 3, 1, 0, 0, 1, 4, 10, 20, 30, 23, 11, 4, 1, 0, 0, 1, 5, 15, 36, 70, 104, 81, 40, 16, 5, 1, 0, 0, 1, 6, 21, 58, 133, 253, 374, 293, 149, 63, 22, 6, 1, 0, 0, 1, 7, 28, 87, 226, 501, 938, 1380, 1087, 564, 248, 93, 29, 7, 1, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, May 16 2006

Keywords

Comments

The diagonals may be generated by iterated convolutions of a base sequence B with the sequence C of central terms. The g.f. B(x) of the base sequence satisfies: B = 1 + x*B^2 + x^2*(B^2 - B); the g.f. C(x) of the central terms satisfies: C(x) = 1/(1+x - x*B(x)).

Examples

			To obtain row 4, pendular sums of row 3 are carried out as follows.
  [1, 2, 3, 2, 1, 0, 0]: given row 3;
  [1, _, _, _, _, _, _]: start with T(4,0) = T(3,0) = 1;
  [1, _, _, _, _, _, 1]: T(4,6) = T(4,0) + T(3,6) = 1 + 0 = 1;
  [1, 3, _, _, _, _, 1]: T(4,1) = T(4,6) + T(3,1) = 1 + 2 = 3;
  [1, 3, _, _, _, 3, 1]: T(4,5) = T(4,1) + T(3,5) = 3 + 0 = 3;
  [1, 3, 6, _, _, 3, 1]: T(4,2) = T(4,5) + T(3,2) = 3 + 3 = 6;
  [1, 3, 6, _, 7, 3, 1]: T(4,4) = T(4,2) + T(3,4) = 6 + 1 = 7;
  [1, 3, 6, 9, 7, 3, 1]: T(4,3) = T(4,4) + T(3,3) = 7 + 2 = 9;
  [1, 3, 6, 9, 7, 3, 1, 0, 0]: complete row 4 by appending two zeros.
Triangle begins:
  1;
  1, 0,  0;
  1, 1,  1,  0,   0;
  1, 2,  3,  2,   1,   0,   0;
  1, 3,  6,  9,   7,   3,   1,    0,    0;
  1, 4, 10, 20,  30,  23,  11,    4,    1,   0,   0;
  1, 5, 15, 36,  70, 104,  81,   40,   16,   5,   1,  0,  0;
  1, 6, 21, 58, 133, 253, 374,  293,  149,  63,  22,  6,  1, 0, 0;
  1, 7, 28, 87, 226, 501, 938, 1380, 1087, 564, 248, 93, 29, 7, 1, 0, 0;
Central terms are:
  C = A119371 = [1, 0, 1, 2, 7, 23, 81, 293, 1087, 4110, ...].
Lower diagonals start:
  D1 = A119372 = [1, 1, 3, 9, 30, 104, 374, 1380, 5197, ...];
  D2 = A119373 = [1, 2, 6, 20, 70, 253, 938, 3546, 13617, ...].
  Diagonals above central terms (ignoring leading zeros) start:
  U1 = A119375 = [1, 3, 11, 40, 149, 564, 2166, 8420, ...];
  U2 = A119376 = [1, 4, 16, 63, 248, 980, 3894, 15563, ...].
There exists the base sequence:
  B = A119370 = [1, 1, 2, 6, 19, 64, 225, 816, 3031, 11473, ...]
which generates all diagonals by convolutions with central terms:
  D2 = B * D1 = B^2 * C
  U2 = B * U1 = B^2 * C"
where C" = [1, 2, 7, 23, 81, 293, 1087, ...]
are central terms not including the initial [1,0].
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k=0 and n=0 then 1
        elif k<0 or k>2*(n-1) then 0
        elif n=2 and k<3 then 1
        else T(n-1, k) + `if`(kG. C. Greubel, Mar 16 2021
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n==0 && k==0, 1, If[k<0 || k>2*(n-1), 0, If[n==2 && k<3, 1, T[n-1, k] +If[kG. C. Greubel, Mar 16 2021 *)
  • PARI
    T(n,k)= if(k==0 && n==0, 1, if(k>2*n-2 || k<0, 0, if(n==2 && k<=2, 1, T(n-1,k) + if(k
    				
  • Sage
    @CachedFunction
    def T(n, k):
        if (n==0 and k==0): return 1
        elif (k<0 or k>2*(n-1)): return 0
        elif (n==2 and k<3): return 1
        else: return T(n-1, k) + ( T(n, 2*n-k-1) if kG. C. Greubel, Mar 16 2021

Formula

Sum_{k=0..2*n} T(n, k) = A119372(n). - G. C. Greubel, Mar 16 2021

A122445 Pendular trinomial triangle, read by rows of 2n+1 terms (n>=0), defined by the recurrence: if 0 < k < n, T(n,k) = T(n-1,k) + 2*T(n,2n-1-k); otherwise, if n-1 < k < 2n-1, T(n,k) = T(n-1,k) + T(n,2n-2-k); with T(n,0) = T(n+1,2n) = 1 and T(n+1,2n+1) = T(n+1,2n+2) = 0.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 3, 2, 1, 0, 0, 1, 3, 6, 10, 8, 3, 1, 0, 0, 1, 4, 10, 22, 36, 28, 12, 4, 1, 0, 0, 1, 5, 15, 39, 83, 135, 107, 47, 17, 5, 1, 0, 0, 1, 6, 21, 62, 155, 324, 525, 418, 189, 72, 23, 6, 1, 0, 0, 1, 7, 28, 92, 259, 629, 1298, 2094, 1676, 773, 305, 104, 30, 7, 1, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2006

Keywords

Comments

The diagonals may be generated by iterated convolutions of a base sequence B with the sequence C of central terms. The g.f. B(x) of the base sequence satisfies: B = 1 + x*B^2 + 2x^2*(B^2 - B); the g.f. C(x) of the central terms satisfies: C(x) = 1/(1+x - xB(x)).

Examples

			To obtain row 4, pendular sums of row 3 are carried out as follows.
  [1, 2, 3,  2, 1, 0, 0]: given row 3;
  [1, _, _, __, _, _, _]: start with T(4,0) = T(3,0) = 1;
  [1, _, _, __, _, _, 1]: T(4,6) = T(4,0) + 2*T(3,6) = 1 + 2*0 = 1;
  [1, 3, _, __, _, _, 1]: T(4,1) = T(4,6) + 1*T(3,1) = 1 + 1*2 = 3;
  [1, 3, _, __, _, 3, 1]: T(4,5) = T(4,1) + 2*T(3,5) = 3 + 2*0 = 3;
  [1, 3, 6, __, _, 3, 1]: T(4,2) = T(4,5) + 1*T(3,2) = 3 + 1*3 = 6;
  [1, 3, 6, __, 8, 3, 1]: T(4,4) = T(4,2) + 2*T(3,4) = 6 + 2*1 = 8;
  [1, 3, 6, 10, 8, 3, 1]: T(4,3) = T(4,4) + 1*T(3,3) = 8 + 1*2 = 10;
  [1, 3, 6, 10, 8, 3, 1,0,0]: complete row 4 by appending two zeros.
Triangle begins:
  1;
  1, 0,  0;
  1, 1,  1,  0,   0;
  1, 2,  3,  2,   1,   0,   0;
  1, 3,  6, 10,   8,   3,   1,   0,   0;
  1, 4, 10, 22,  36,  28,  12,   4,   1,  0,  0;
  1, 5, 15, 39,  83, 135, 107,  47,  17,  5,  1, 0, 0;
  1, 6, 21, 62, 155, 324, 525, 418, 189, 72, 23, 6, 1, 0, 0;
Central terms are:
  C = A122447 = [1, 0, 1, 2, 8, 28, 107, 418, 1676, 6848, ...].
Lower diagonals start:
  D1 = A122448 = [1, 1, 3, 10, 36, 135, 525, 2094, 8524, ...];
  D2 = A122449 = [1, 2, 6, 22, 83, 324, 1298, 5302, 22002, ...].
Diagonals above central terms (ignoring leading zeros) start:
  U1 = A122450 = [1, 3, 12, 47, 189, 773, 3208, 13478, 57222, ...];
  U2 = A122451 = [1, 4, 17, 72, 305, 1300, 5576, 24068, 104510, ...].
There exists the base sequence:
  B = A122446 = [1, 1, 2, 7, 24, 88, 336, 1321, 5316, 21788, ...]
which generates all diagonals by convolutions with central terms:
  D2 = B * D1 = B^2 * C
  U2 = B * U1 = B^2 * C"
where C" = [1, 2, 8, 28, 107, 418, 1676, 6848, 28418, ...]
are central terms not including the initial [1,0].
		

Crossrefs

Cf. A122446, A122447 (central terms), A122452 (row sums).

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k=0 and n=0 then 1
        elif k<0 or k>2*(n-1) then 0
        elif n=2 and k<3 then 1
        else T(n-1, k) + `if`(kG. C. Greubel, Mar 16 2021
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n==0 && k==0, 1, If[k<0 || k>2*(n-1), 0, If[n==2 && k<3, 1, T[n-1, k] + If[kG. C. Greubel, Mar 16 2021 *)
  • PARI
    {T(n,k)= if(k==0 && n==0, 1, if(k>2*n-2 || k<0, 0, if(n==2 && k<=2, 1, if(k
    				
  • Sage
    @CachedFunction
    def T(n, k):
        if (n==0 and k==0): return 1
        elif (k<0 or k>2*(n-1)): return 0
        elif (n==2 and k<3): return 1
        else: return T(n-1, k) + ( T(n, 2*n-k-1) if kG. C. Greubel, Mar 16 2021

A167763 Pendular triangle (p=0), read by rows, where row n is formed from row n-1 by the recurrence: if n > 2k, T(n,k) = T(n,n-k) + T(n-1,k), otherwise T(n,k) = T(n,n-1-k) + p*T(n-1,k), for n >= k <= 0, with T(n,0) = 1 and T(n,n) = 0^n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 7, 4, 1, 0, 1, 5, 12, 12, 5, 1, 0, 1, 6, 18, 30, 18, 6, 1, 0, 1, 7, 25, 55, 55, 25, 7, 1, 0, 1, 8, 33, 88, 143, 88, 33, 8, 1, 0, 1, 9, 42, 130, 273, 273, 130, 42, 9, 1, 0, 1, 10, 52, 182, 455, 728, 455, 182, 52, 10, 1, 0
Offset: 0

Views

Author

Philippe Deléham, Nov 11 2009

Keywords

Comments

See A118340 for definition of pendular triangles and pendular sums.
The last five rows in the example section appear in the table on p. 8 of Getzler. Cf. also A173075. - Tom Copeland, Jan 22 2020

Examples

			Triangle begins:
  1;
  1,  0;
  1,  1,  0;
  1,  2,  1,  0;
  1,  3,  3,  1,  0;
  1,  4,  7,  4,  1,  0;
  1,  5, 12, 12,  5,  1,  0; ...
		

Crossrefs

Cf. this sequence (p=0), A118340 (p=1), A118345 (p=2), A118350 (p=3).

Programs

  • Magma
    function T(n,k,p)
      if k lt 0 or n lt k then return 0;
      elif k eq 0 then return 1;
      elif k eq n then return 0;
      elif n gt 2*k then return T(n,n-k,p) + T(n-1,k,p);
      else return T(n,n-k-1,p) + p*T(n-1,k,p);
      end if;
      return T;
    end function;
    [T(n,k,0): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2021
  • Mathematica
    T[n_, k_, p_]:= T[n,k,p] = If[nG. C. Greubel, Feb 17 2021 *)
  • PARI
    {T(n,k)=if(k==0,1,if(n==k,0,if(n>2*k,binomial(n+k+1,k)*(n-2*k+1)/(n+k+1),T(n,n-1-k))))} \\ Paul D. Hanna, Nov 12 2009
    
  • Sage
    @CachedFunction
    def T(n, k, p):
        if (k<0 or n2*k): return T(n,n-k,p) + T(n-1,k,p)
        else: return T(n, n-k-1, p) + p*T(n-1, k, p)
    flatten([[T(n, k, 0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 17 2021
    

Formula

T(2n+m) = [A001764^(m+1)](n), i.e., the m-th lower semi-diagonal forms the self-convolution (m+1)-power of A001764.
If n > 2k, T(n,k) = binomial(n+k+1,k)*(n-2k+1)/(n+k+1), else T(n,k) = T(n,n-1-k), with conditions: T(n,0)=1 for n>=0 and T(n,n)=0 for n > 0. - Paul D. Hanna, Nov 12 2009
Sum_{k=0..n} T(n, k, p=0) = A093951(n). - G. C. Greubel, Feb 17 2021

A118343 Triangle, read by rows, where diagonals are successive self-convolutions of A108447.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 9, 20, 0, 1, 4, 15, 48, 113, 0, 1, 5, 22, 85, 282, 688, 0, 1, 6, 30, 132, 519, 1762, 4404, 0, 1, 7, 39, 190, 837, 3330, 11488, 29219, 0, 1, 8, 49, 260, 1250, 5516, 22135, 77270, 199140, 0, 1, 9, 60, 343, 1773, 8461, 37404, 151089, 532239, 1385904, 0
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2006

Keywords

Comments

A108447 equals the central terms of pendular triangle A118340 and the diagonals of this triangle form the semi-diagonals of the triangle A118340. Row sums equal A054727, the number of forests of rooted trees with n nodes on a circle without crossing edges.

Examples

			Show: T(n,k) = T(n-1,k) - T(n-1,k-1) + T(n,k-1) + T(n+1,k-1)
at n=8,k=4: T(8,4) = T(7,4) - T(7,3) + T(8,3) + T(9,3)
or 837 = 519 - 132 + 190 + 260.
Triangle begins:
  1;
  1, 0;
  1, 1,  0;
  1, 2,  4,   0;
  1, 3,  9,  20,    0;
  1, 4, 15,  48,  113,    0;
  1, 5, 22,  85,  282,  688,     0;
  1, 6, 30, 132,  519, 1762,  4404,      0;
  1, 7, 39, 190,  837, 3330, 11488,  29219,      0;
  1, 8, 49, 260, 1250, 5516, 22135,  77270, 199140,       0;
  1, 9, 60, 343, 1773, 8461, 37404, 151089, 532239, 1385904, 0;
		

Crossrefs

Cf. A054727 (row sums), A108447, A118340.

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or  k>n then 0;
        elif k=0 then 1;
        elif k=n then 0;
        else T(n-1, k) -T(n-1, k-1) +T(n, k-1) +T(n+1, k-1);
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 17 2021
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, 1, If[k==n, 0, T[n-1, k] -T[n-1, k-1] +T[n, k-1] +T[n+1, k-1] ]]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 17 2021 *)
  • PARI
    {T(n,k)=polcoeff((serreverse(x*(1-x+sqrt((1-x)*(1-5*x)+x*O(x^k)))/2/(1-x))/x)^(n-k),k)}
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (k==0): return 1
        elif (k==n): return 0
        else: return T(n-1, k) -T(n-1, k-1) +T(n, k-1) +T(n+1, k-1)
    flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 17 2021

Formula

Since g.f. G=G(x) of A108447 satisfies: G = 1 - x*G + x*G^2 + x*G^3 then T(n,k) = T(n-1,k) - T(n-1,k-1) + T(n,k-1) + T(n+1,k-1). Also, a recurrence involving antidiagonals is: T(n,k) = T(n-1,k) + Sum_{j=1..k} [2*T(n-1+j,k-j) - T(n-2+j,k-j)] for n>k>=0.
Sum_{k=0..n} T(n,k) = [n=0] + A054727(n) = [n=0] + Sum_{j=1..n} binomial(n, j-1)*binomial(3*n-2*j-1, n-j)/(2*n-j). - G. C. Greubel, Mar 17 2021

A118344 Pendular Catalan triangle, read by rows, where row n is formed from row n-1 by the recurrence: if n > 2k, T(n,k) = T(n,n-k) + T(n-1,k), else T(n,k) = T(n,n-1-k) - T(n-1,k) - T(n-1,k+1), for n>=k>=0, with T(n,0)=1 and T(n,n)=0^n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 0, 1, 4, 5, 3, 1, 0, 1, 5, 9, 5, 4, 1, 0, 1, 6, 14, 14, 9, 5, 1, 0, 1, 7, 20, 28, 14, 14, 6, 1, 0, 1, 8, 27, 48, 42, 28, 20, 7, 1, 0, 1, 9, 35, 75, 90, 42, 48, 27, 8, 1, 0, 1, 10, 44, 110, 165, 132, 90, 75, 35, 9, 1, 0, 1, 11, 54, 154, 275, 297, 132, 165, 110, 44, 10, 1, 0
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2006

Keywords

Comments

See A118340 for definition of pendular triangles and pendular sums.

Examples

			Row 6 equals the pendular sums of row 5:
  [1,  4,  5,  3,  1,  0], where the sums proceed as follows:
  [1, __, __, __, __, __]: T(6,0) = T(5,0) = 1;
  [1, __, __, __, __,  1]: T(6,5) = T(6,0) - T(5,5) = 1 - 0 = 1;
  [1,  5, __, __, __,  1]: T(6,1) = T(6,5) + T(5,1) = 1 + 4 = 5;
  [1,  5, __, __,  4,  1]: T(6,4) = T(6,1) - T(5,4) - T(5,5) = 5-1-0 = 4;
  [1,  5,  9, __,  4,  1]: T(6,2) = T(6,4) + T(5,2) = 4 + 5 = 9;
  [1,  5,  9,  5,  4,  1]: T(6,3) = T(6,2) - T(5,3) - T(5,4) = 9-3-1 = 5;
  [1,  5,  9,  5,  4,  1,  0] finally, append a zero to obtain row 6.
Triangle begins:
  1;
  1,  0;
  1,  1,  0;
  1,  2,  1,   0;
  1,  3,  2,   1,   0;
  1,  4,  5,   3,   1,   0;
  1,  5,  9,   5,   4,   1,   0;
  1,  6, 14,  14,   9,   5,   1,   0;
  1,  7, 20,  28,  14,  14,   6,   1,   0;
  1,  8, 27,  48,  42,  28,  20,   7,   1,  0;
  1,  9, 35,  75,  90,  42,  48,  27,   8,  1,  0;
  1, 10, 44, 110, 165, 132,  90,  75,  35,  9,  1,  0;
  1, 11, 54, 154, 275, 297, 132, 165, 110, 44, 10,  1,  0;
Central terms are Catalan numbers T(2*n,n) = A000108(n);
semi-diagonals form successive self-convolutions of the central terms:
  T(2*n+1,n) = [A000108^2](n),
  T(2*n+2,n) = [A000108^3](n).
		

Crossrefs

Cf. A000108, A033184, A118340, A026010 (row sums shift left).

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or k>n then 0;
        elif k=0 then 1;
        elif k=n then 0;
        elif n>2*k then T(n, n-k) +T(n-1, k);
        else T(n, n-k-1) -T(n-1, k) -T(n-1, k+1);
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 17 2021
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, 1, If[k==n, 0, If[n>2*k, T[n, n-k] +T[n-1, k], T[n, n-k-1] -T[n-1, k] -T[n-1, k+1] ]]]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 17 2021 *)
  • PARI
    T(n,k)=if(n2*k,T(n,n-k)+T(n-1,k),T(n,n-1-k)-T(n-1,k)-if(n-1>k,T(n-1,k+1)) ))))
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (k==0): return 1
        elif (k==n): return 0
        elif (n>2*k): return T(n, n-k) +T(n-1, k)
        else: return T(n, n-k-1) -T(n-1, k) -T(n-1, k+1)
    flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 17 2021

Formula

T(2*n+m, n) = [A000108^(m+1)](n), i.e., the m-th lower semi-diagonal forms the self-convolution (m+1)-power of A000108.
Sum_{k=0..n} T(n,k) = (1/2)*[n=0] + A026010(n-1) = (1/2)*[n=0] + (1/2)^((5 + (-1)^n)/2)*(6*n + 1 + 3*(-1)^n)*Catalan((2*n - 1 + (-1)^n)/4). - G. C. Greubel, Mar 17 2021

A168148 Row sums of triangle in A168030.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 3, 6, 6, 6, 4, 6, 7, 10, 6, 11, 12, 10, 6, 8, 8, 12, 8, 12, 11, 18, 12, 13, 16, 20, 11, 22, 22, 18, 12, 14, 14, 16, 10, 14, 12, 24, 16, 16, 18, 22, 12, 22, 23, 34, 20, 25, 28, 26, 17, 30, 26, 38, 24, 26, 31, 42, 22, 43, 44, 34, 22, 28, 26, 30, 20, 26
Offset: 0

Views

Author

Philippe Deléham, Nov 19 2009

Keywords

Crossrefs

Programs

  • Mathematica
    t[n_, k_]:= t[n, k]= If[k<0 || k>n, 0, If[k==0, 1, If[n<=2*k, t[n, n-k -1] + t[n-1,k], t[n,n-k] + t[n-1,k]]]]; (* A118340 *)
    Table[Sum[Mod[t[n, k], 2], {k,0,n}], {n,0,80}] (* G. C. Greubel, Jan 12 2023 *)
  • SageMath
    @CachedFunction
    def t(n, k): # t = A118340
        if (k<0 or k>n): return 0
        elif (k==0): return 1
        elif (n>2*k): return t(n, n-k) + t(n-1, k)
        else: return t(n, n-k-1) + t(n-1, k)
    def A168148(n): return sum( t(n,k)%2 for k in range(n+1))
    [A168148(n) for n in range(81)] # G. C. Greubel, Jan 12 2023

Formula

From G. C. Greubel, Jan 12 2023: (Start)
a(n) = Sum_{k=0..n} A168030(n, k).
a(n) = Sum_{k=0..n} (A118340(n, k) mod 2). (End)

Extensions

Terms a(16) onward added by G. C. Greubel, Jan 12 2023
Showing 1-9 of 9 results.