cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118347 Semi-diagonal (one row below central terms) of pendular triangle A118345 and equal to the self-convolution of the central terms (A118346).

Original entry on oeis.org

1, 2, 11, 70, 487, 3592, 27600, 218566, 1771367, 14621410, 122495659, 1038934480, 8903129300, 76970244560, 670507216168, 5879770542870, 51861650744071, 459804626981158, 4095433894576785, 36628711884398086, 328824295880947471
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2006

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!( (Reversion( x*(1-2*x +Sqrt((1-2*x)*(1-6*x)))/(2*(1-2*x)) )/x)^2 )); // G. C. Greubel, Mar 17 2021
  • Mathematica
    CoefficientList[(InverseSeries[Series[x*(1-2*x +Sqrt[(1-2*x)*(1-6*x)])/(2*(1-2*x)), {x, 0, 30}]]/x)^2, x] (* G. C. Greubel, Mar 17 2021 *)
  • PARI
    {a(n) = polcoeff( (serreverse(x*(1-2*x+sqrt((1-2*x)*(1-6*x)+x*O(x^n)))/(2*(1-2*x)))/x)^2,n)}
    
  • Sage
    def A118347_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (( x*(1-2*x +sqrt((1-2*x)*(1-6*x)))/(2*(1-2*x)) ).reverse()/x)^2 ).list()
    A118347_list(31) # G. C. Greubel, Mar 17 2021
    

Formula

G.f.: ( series_inverse( x*(1-2*x +sqrt((1-2*x)*(1-6*x)))/(2*(1-2*x)) )/x )^2.