A118345 Pendular triangle, read by rows, where row n is formed from row n-1 by the recurrence: if n > 2k, T(n,k) = T(n,n-k) + T(n-1,k), else T(n,k) = T(n,n-1-k) + 2*T(n-1,k), for n>=k>=0, with T(n,0) = 1 and T(n,n) = 0^n.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 5, 1, 0, 1, 4, 11, 6, 1, 0, 1, 5, 18, 30, 7, 1, 0, 1, 6, 26, 70, 40, 8, 1, 0, 1, 7, 35, 121, 201, 51, 9, 1, 0, 1, 8, 45, 184, 487, 286, 63, 10, 1, 0, 1, 9, 56, 260, 873, 1445, 386, 76, 11, 1, 0, 1, 10, 68, 350, 1375, 3592, 2147, 502, 90, 12, 1, 0
Offset: 0
Examples
Row 6 equals the pendular sums of row 5: [1, 4, 11, 6, 1, 0], where the pendular sums proceed as follows: [1, __, __, __, __, __]: T(6,0) = T(5,0) = 1; [1, __, __, __, __, 1]: T(6,5) = T(6,0) + 2*T(5,5) = 1 + 2*0 = 1; [1, 5, __, __, __, 1]: T(6,1) = T(6,5) + T(5,1) = 1 + 4 = 5; [1, 5, __, __, 7, 1]: T(6,4) = T(6,1) + 2*T(5,4) = 5 + 2*1 = 7; [1, 5, 18, __, 7, 1]: T(6,2) = T(6,4) + T(5,2) = 7 + 11 = 18; [1, 5, 18, 30, 7, 1]: T(6,3) = T(6,2) + 2*T(5,3) = 18 + 2*6 = 30; [1, 5, 18, 30, 7, 1, 0] finally, append a zero to obtain row 6. Triangle begins: 1; 1, 0; 1, 1, 0; 1, 2, 1, 0; 1, 3, 5, 1, 0; 1, 4, 11, 6, 1, 0; 1, 5, 18, 30, 7, 1, 0; 1, 6, 26, 70, 40, 8, 1, 0; 1, 7, 35, 121, 201, 51, 9, 1, 0; 1, 8, 45, 184, 487, 286, 63, 10, 1, 0; 1, 9, 56, 260, 873, 1445, 386, 76, 11, 1, 0; 1, 10, 68, 350, 1375, 3592, 2147, 502, 90, 12, 1, 0; ... Central terms are T(2*n,n) = A118346(n); semi-diagonals form successive self-convolutions of the central terms: T(2*n+1,n) = A118347(n) = [A118346^2](n), T(2*n+2,n) = A118348(n) = [A118346^3](n).
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Crossrefs
Programs
-
Magma
function T(n,k,p) if k lt 0 or n lt k then return 0; elif k eq 0 then return 1; elif k eq n then return 0; elif n gt 2*k then return T(n,n-k,p) + T(n-1,k,p); else return T(n,n-k-1,p) + p*T(n-1,k,p); end if; return T; end function; [T(n,k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2021
-
Mathematica
T[n_, k_, p_]:= T[n,k,p] = If[n
G. C. Greubel, Feb 17 2021 *) -
PARI
T(n,k)=if(n
2*k,T(n,n-k)+T(n-1,k),T(n,n-1-k)+2*T(n-1,k))))) -
Sage
@CachedFunction def T(n, k, p): if (k<0 or n
2*k): return T(n,n-k,p) + T(n-1,k,p) else: return T(n, n-k-1, p) + p*T(n-1, k, p) flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 17 2021
Comments