cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A118349 Convolution triangle, read by rows, where diagonals are successive self-convolutions of A118346.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 5, 0, 1, 3, 11, 30, 0, 1, 4, 18, 70, 201, 0, 1, 5, 26, 121, 487, 1445, 0, 1, 6, 35, 184, 873, 3592, 10900, 0, 1, 7, 45, 260, 1375, 6606, 27600, 85128, 0, 1, 8, 56, 350, 2010, 10672, 51728, 218566, 682505, 0, 1, 9, 68, 455, 2796, 15996, 85182, 415629, 1771367, 5585115, 0
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2006

Keywords

Comments

A118346 equals the central terms of pendular triangle A118345 and the diagonals of this triangle form the semi-diagonals of the triangle A118345.

Examples

			Show: T(n,k) = T(n-1,k) - 2*T(n-1,k-1) + 2*T(n,k-1) + T(n+1,k-1)
at n=8,k=4: T(8,4) = T(7,4) - 2*T(7,3) + 2*T(8,3) + T(9,3)
or: 1375 = 873 - 2*184 + 2*260 + 350.
Triangle begins:
  1;
  1, 0;
  1, 1,  0;
  1, 2,  5,   0;
  1, 3, 11,  30,    0;
  1, 4, 18,  70,  201,     0;
  1, 5, 26, 121,  487,  1445,     0;
  1, 6, 35, 184,  873,  3592, 10900,      0;
  1, 7, 45, 260, 1375,  6606, 27600,  85128,       0;
  1, 8, 56, 350, 2010, 10672, 51728, 218566,  682505,       0;
  1, 9, 68, 455, 2796, 15996, 85182, 415629, 1771367, 5585115, 0;
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or  k>n then 0;
        elif k=0 then 1;
        elif k=n then 0;
        else T(n-1, k) -2*T(n-1, k-1) +2*T(n, k-1) +T(n+1, k-1);
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 17 2021
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, 1, If[k==n, 0, T[n-1, k] -2*T[n-1, k-1] +2*T[n, k-1] +T[n+1, k-1] ]]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 17 2021 *)
  • PARI
    {T(n,k)=polcoeff((serreverse(x*(1-2*x+sqrt((1-2*x)*(1-6*x)+x*O(x^k)))/2/(1-2*x))/x)^(n-k),k)}
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (k==0): return 1
        elif (k==n): return 0
        else: return T(n-1, k) -2*T(n-1, k-1) +2*T(n, k-1) +T(n+1, k-1)
    flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 17 2021

Formula

Since g.f. G=G(x) of A118346 satisfies: G = 1 - 2*x*G + 2*x*G^2 + x*G^3 then T(n,k) = T(n-1,k) - 2*T(n-1,k-1) + 2*T(n,k-1) + T(n+1,k-1). Also, a recurrence involving antidiagonals is: T(n,k) = T(n-1,k) + Sum_{j=1..k} [3*T(n-1+j,k-j) - 2*T(n-2+j,k-j)] for n>k>=0.

A118347 Semi-diagonal (one row below central terms) of pendular triangle A118345 and equal to the self-convolution of the central terms (A118346).

Original entry on oeis.org

1, 2, 11, 70, 487, 3592, 27600, 218566, 1771367, 14621410, 122495659, 1038934480, 8903129300, 76970244560, 670507216168, 5879770542870, 51861650744071, 459804626981158, 4095433894576785, 36628711884398086, 328824295880947471
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2006

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!( (Reversion( x*(1-2*x +Sqrt((1-2*x)*(1-6*x)))/(2*(1-2*x)) )/x)^2 )); // G. C. Greubel, Mar 17 2021
  • Mathematica
    CoefficientList[(InverseSeries[Series[x*(1-2*x +Sqrt[(1-2*x)*(1-6*x)])/(2*(1-2*x)), {x, 0, 30}]]/x)^2, x] (* G. C. Greubel, Mar 17 2021 *)
  • PARI
    {a(n) = polcoeff( (serreverse(x*(1-2*x+sqrt((1-2*x)*(1-6*x)+x*O(x^n)))/(2*(1-2*x)))/x)^2,n)}
    
  • Sage
    def A118347_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (( x*(1-2*x +sqrt((1-2*x)*(1-6*x)))/(2*(1-2*x)) ).reverse()/x)^2 ).list()
    A118347_list(31) # G. C. Greubel, Mar 17 2021
    

Formula

G.f.: ( series_inverse( x*(1-2*x +sqrt((1-2*x)*(1-6*x)))/(2*(1-2*x)) )/x )^2.

A118348 Semi-diagonal (two rows below central terms) of pendular triangle A118345 and equal to the self-convolution cube of the central terms (A118346).

Original entry on oeis.org

1, 3, 18, 121, 873, 6606, 51728, 415629, 3407391, 28388847, 239675406, 2045980440, 17629939980, 153142537440, 1339599358944, 11789960853293, 104327344928619, 927627432162129, 8283625668834238, 74259685465582569, 668054892245119353
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2006

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!( (Reversion( x*(1-2*x +Sqrt((1-2*x)*(1-6*x)))/(2*(1-2*x)) )/x)^3 )); // G. C. Greubel, Mar 17 2021
  • Mathematica
    CoefficientList[(InverseSeries[Series[x*(1-2*x +Sqrt[(1-2*x)*(1-6*x)])/(2*(1-2*x)), {x, 0, 30}]]/x)^3, x] (* G. C. Greubel, Mar 17 2021 *)
  • PARI
    {a(n) = polcoeff( (serreverse(x*(1-2*x+sqrt((1-2*x)*(1-6*x)+x*O(x^n)))/(2*(1-2*x)))/x)^3, n)}
    
  • Sage
    def A118347_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (( x*(1-2*x +sqrt((1-2*x)*(1-6*x)))/(2*(1-2*x)) ).reverse()/x)^3 ).list()
    A118347_list(31) # G. C. Greubel, Mar 17 2021
    

Formula

G.f.: ( series_inverse( x*(1-2*x +sqrt((1-2*x)*(1-6*x)))/(2*(1-2*x)) )/x )^3.

A118345 Pendular triangle, read by rows, where row n is formed from row n-1 by the recurrence: if n > 2k, T(n,k) = T(n,n-k) + T(n-1,k), else T(n,k) = T(n,n-1-k) + 2*T(n-1,k), for n>=k>=0, with T(n,0) = 1 and T(n,n) = 0^n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 5, 1, 0, 1, 4, 11, 6, 1, 0, 1, 5, 18, 30, 7, 1, 0, 1, 6, 26, 70, 40, 8, 1, 0, 1, 7, 35, 121, 201, 51, 9, 1, 0, 1, 8, 45, 184, 487, 286, 63, 10, 1, 0, 1, 9, 56, 260, 873, 1445, 386, 76, 11, 1, 0, 1, 10, 68, 350, 1375, 3592, 2147, 502, 90, 12, 1, 0
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2006

Keywords

Comments

See A118340 for definition of pendular triangles and pendular sums.

Examples

			Row 6 equals the pendular sums of row 5:
  [1,  4, 11,  6,  1,  0], where the pendular sums proceed as follows:
  [1, __, __, __, __, __]: T(6,0) = T(5,0) = 1;
  [1, __, __, __, __,  1]: T(6,5) = T(6,0) + 2*T(5,5) = 1 + 2*0 = 1;
  [1,  5, __, __, __,  1]: T(6,1) = T(6,5) + T(5,1) = 1 + 4 = 5;
  [1,  5, __, __,  7,  1]: T(6,4) = T(6,1) + 2*T(5,4) = 5 + 2*1 = 7;
  [1,  5, 18, __,  7,  1]: T(6,2) = T(6,4) + T(5,2) = 7 + 11 = 18;
  [1,  5, 18, 30,  7,  1]: T(6,3) = T(6,2) + 2*T(5,3) = 18 + 2*6 = 30;
  [1,  5, 18, 30,  7,  1, 0] finally, append a zero to obtain row 6.
Triangle begins:
  1;
  1,  0;
  1,  1,  0;
  1,  2,  1,   0;
  1,  3,  5,   1,    0;
  1,  4, 11,   6,    1,    0;
  1,  5, 18,  30,    7,    1,    0;
  1,  6, 26,  70,   40,    8,    1,   0;
  1,  7, 35, 121,  201,   51,    9,   1,  0;
  1,  8, 45, 184,  487,  286,   63,  10,  1,  0;
  1,  9, 56, 260,  873, 1445,  386,  76, 11,  1, 0;
  1, 10, 68, 350, 1375, 3592, 2147, 502, 90, 12, 1, 0; ...
Central terms are T(2*n,n) = A118346(n);
semi-diagonals form successive self-convolutions of the central terms:
T(2*n+1,n) = A118347(n) = [A118346^2](n),
T(2*n+2,n) = A118348(n) = [A118346^3](n).
		

Crossrefs

Cf. A167763 (p=0), A118340 (p=1), this sequence (p=2), A118350 (p=3).

Programs

  • Magma
    function T(n,k,p)
      if k lt 0 or n lt k then return 0;
      elif k eq 0 then return 1;
      elif k eq n then return 0;
      elif n gt 2*k then return T(n,n-k,p) + T(n-1,k,p);
      else return T(n,n-k-1,p) + p*T(n-1,k,p);
      end if;
      return T;
    end function;
    [T(n,k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2021
  • Mathematica
    T[n_, k_, p_]:= T[n,k,p] = If[nG. C. Greubel, Feb 17 2021 *)
  • PARI
    T(n,k)=if(n2*k,T(n,n-k)+T(n-1,k),T(n,n-1-k)+2*T(n-1,k)))))
    
  • Sage
    @CachedFunction
    def T(n, k, p):
        if (k<0 or n2*k): return T(n,n-k,p) + T(n-1,k,p)
        else: return T(n, n-k-1, p) + p*T(n-1, k, p)
    flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 17 2021
    

Formula

T(2*n+m,n) = [A118346^(m+1)](n), i.e., the m-th lower semi-diagonal forms the self-convolution (m+1)-power of A118346.

A336707 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} 2^(n-j) * binomial(n,j) * binomial(n+(k-1)*j,j-1) for n > 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 11, 20, 1, 1, 5, 19, 45, 72, 1, 1, 6, 30, 100, 197, 272, 1, 1, 7, 44, 201, 562, 903, 1064, 1, 1, 8, 61, 364, 1445, 3304, 4279, 4272, 1, 1, 9, 81, 605, 3249, 10900, 20071, 20793, 17504, 1, 1, 10, 104, 940, 6502, 30526, 85128, 124996, 103049, 72896
Offset: 0

Views

Author

Seiichi Manyama, Aug 01 2020

Keywords

Examples

			Square array begins:
    1,   1,    1,     1,     1,     1,      1, ...
    1,   1,    1,     1,     1,     1,      1, ...
    2,   3,    4,     5,     6,     7,      8, ...
    6,  11,   19,    30,    44,    61,     81, ...
   20,  45,  100,   201,   364,   605,    940, ...
   72, 197,  562,  1445,  3249,  6502,  11857, ...
  272, 903, 3304, 10900, 30526, 73723, 158034, ...
		

Crossrefs

Columns k=0-3 give: A071356(n-1), A001003, A007564, A118346.
Main diagonal gives A336712.

Programs

  • Mathematica
    T[0, k_] := 1; T[n_, k_] := Sum[2^(n - j) * Binomial[n, j] * Binomial[n + (k - 1)*j, j - 1], {j, 1, n}] / n; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 01 2020 *)
  • PARI
    {T(n, k) = if(n==0, 1, sum(j=1, n, 2^(n-j)*binomial(n, j)*binomial(n+(k-1)*j, j-1))/n)}
    
  • PARI
    {T(n, k) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^k/(1-2*x*A)); polcoef(A, n)}

Formula

G.f. A_k(x) of column k satisfies A_k(x) = 1 + x * A_k(x)^k / (1 - 2 * x * A_k(x)).
Showing 1-5 of 5 results.