cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118353 Semi-diagonal (two rows below central terms) of pendular triangle A118350 and equal to the self-convolution cube of the central terms (A118351).

Original entry on oeis.org

1, 3, 21, 163, 1353, 11760, 105681, 973953, 9154821, 87428388, 845894700, 8273978100, 81682757317, 812829371205, 8144563709391, 82104333340467, 832125695906313, 8473862660311392, 86661931504395228, 889705959333345756
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2006

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==n, 0, T[n-1, k] - 3*T[n-1, k-1] + 3*T[n, k-1] + T[n+1, k-1] ]];
    Table[T[n, n-3], {n, 3, 30}] (* G. C. Greubel, Feb 18 2021 *)
  • PARI
    my(x='x+O('x^33)); Vec((serreverse(x*(1-3*x+sqrt((1-3*x)*(1-7*x)))/2/(1-3*x))/x)^3)
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or nG. C. Greubel, Feb 18 2021