A118392 Denominator of sum of reciprocals of first n tetrahedral numbers A000292.
1, 4, 20, 5, 7, 56, 24, 15, 55, 44, 52, 91, 35, 80, 272, 51, 57, 380, 140, 77, 253, 184, 200, 325, 117, 252, 812, 145, 155, 992, 352, 187, 595, 420, 444, 703, 247, 520, 1640, 287, 301, 1892, 660, 345, 1081, 752, 784, 1225, 425, 884, 2756, 477, 495, 3080
Offset: 1
Examples
a(1) = 1 = denominator of 1/1. a(2) = 4 = denominator of 5/4 = 1/1 + 1/4. a(3) = 20 = denominator of 27/20 = 1/1 + 1/4 + 1/10. a(4) = 5 = denominator of 7/5 = 1/1 + 1/4 + 1/10 + 1/20. a(5) = 7 = denominator of 10/7 = 1/1 + 1/4 + 1/10 + 1/20 + 1/35. a(20) = 77 = denominator of 115/77 = 1/1 + 1/4 + 1/10 + 1/20 + 1/35 + 1/56 + 1/84 + 1/120 + 1/165 + 1/220 + 1/286 + 1/364 + 1/455 + 1/560 + 1/680 + 1/816 + 1/969 + 1/1140 + 1/1330 + 1/1540. Fractions are: 1/1, 5/4, 27/20, 7/5, 10/7, 81/56, 35/24, 22/15, 81/55, 65/44, 77/52, 135/91, 52/35, 119/80, 405/272, 76/51, 85/57, 567/380, 209/140, 115/77, 378/253, 275/184, 299/200, 486/325, 175/117, 377/252, 1215/812, 217/145, 232/155, 1485/992.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[Denominator(3*n*(n+3)/(2*(n+1)*(n+2))): n in [1..60]]; // G. C. Greubel, Feb 18 2021
-
Maple
A118392:= n -> denom(3*n*(n+3)/(2*(n+1)*(n+2))); seq(A118392(n), n = 1..60); # G. C. Greubel, Feb 18 2021
-
Mathematica
Accumulate[1/Binomial[Range[70]+2,3]]//Denominator (* Harvey P. Dale, Jun 07 2018 *)
-
PARI
s=0;for(i=3,50,s+=1/binomial(i,3);print(denominator(s))) /* Phil Carmody, Mar 27 2012 */
-
Sage
[denominator(3*n*(n+3)/(2*(n+1)*(n+2))) for n in (1..60)] # G. C. Greubel, Feb 18 2021
Formula
Extensions
More terms from Harvey P. Dale, Jun 07 2018
Comments