A118403 Unsigned row sums of triangle A118401; a(n) = A118402(n^2-n+2), where A118402 is the row sums of triangle A118400.
1, 1, 3, 5, 9, 15, 23, 33, 45, 59, 75, 93, 113, 135, 159, 185, 213, 243, 275, 309, 345, 383, 423, 465, 509, 555, 603, 653, 705, 759, 815, 873, 933, 995, 1059, 1125, 1193, 1263, 1335, 1409, 1485, 1563, 1643, 1725, 1809, 1895, 1983, 2073, 2165, 2259, 2355
Offset: 0
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Maple
seq(coeff(series((1-2*x+2*x^2)*(1+x^2)/(1-x)^3,x,n+1), x, n), n = 0 .. 55); # Muniru A Asiru, Jan 02 2019
-
Mathematica
Join[{1, 1}, Table[n^2 + n + 3, {n, 0, 47}]] (* Jon Maiga, Jan 02 2019 *)
-
PARI
{a(n)=polcoeff((1-2*x+2*x^2)*(1+x^2)/(1-x+x*O(x^n))^3,n,x)}
Formula
G.f.: A(x) = (1-2*x+2*x^2)*(1+x^2)/(1-x)^3.
E.g.f.: exp(x)*(5 - 2*x + x^2) - 2*(2 + x). - Stefano Spezia, Dec 21 2024