A118427 Decimal expansion of hexanacci constant.
1, 9, 8, 3, 5, 8, 2, 8, 4, 3, 4, 2, 4, 3, 2, 6, 3, 3, 0, 3, 8, 5, 6, 2, 9, 2, 9, 3, 3, 9, 1, 4, 2, 5, 7, 5, 2, 7, 3, 0, 0, 8, 0, 8, 6, 5, 5, 6, 8, 8, 2, 1, 7, 5, 3, 2, 1, 6, 3, 5, 9, 0, 6, 5, 6, 5, 6, 7, 0, 2, 2, 7, 8, 0, 1, 4, 1, 7, 2, 4, 0, 2, 9, 8, 6, 5, 7, 5, 0, 7, 0, 2, 2, 6, 8, 9, 9, 7, 9, 7, 3, 2, 7, 7, 5
Offset: 1
Examples
1.9835828434243263303...
References
- Martin Gardner, The Second Scientific American Book Of Mathematical Puzzles and Diversions, "Phi: The Golden Ratio", Chapter 8, Simon & Schuster, NY, 1961.
Links
- S. Litsyn and Vladimir Shevelev, Irrational Factors Satisfying the Little Fermat Theorem, International Journal of Number Theory, vol.1, no.4 (2005), 499-512.
- Vladimir Shevelev, A property of n-bonacci constant, Seqfan (Mar 23 2014)
- Eric Weisstein's World of Mathematics, Hexanacci Number
- Eric Weisstein's World of Mathematics, Hexanacci Constant
- Eric Weisstein's World of Mathematics, Hexanacci Number
- Index entries for algebraic numbers, degree 6.
Crossrefs
Programs
-
Mathematica
RealDigits[ Root[ x^6 - x^5 - x^4 - x^3 - x^2 - x - 1, 2] , 10, 105] // First (* Jean-François Alcover, Feb 07 2013 *)
Comments