cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A239565 (Round(c^prime(n)) - 1)/prime(n), where c is the hexanacci constant (A118427).

Original entry on oeis.org

6702, 23594, 301738, 14576792, 53653610, 2738173594, 38254296398, 143514673148, 2032676550562, 109797468019174, 6007838407290514, 22863415355711030, 1267938526864061370, 18523200405015238420, 70884650213591098558, 3989789924439684599434
Offset: 7

Views

Author

Keywords

Comments

For n>=7, round(c^prime(n)) == 1 (mod 2*prime(n)). Proof in Shevelev link. In particular, all terms are even.

Crossrefs

A058265 Decimal expansion of the tribonacci constant t, the real root of x^3 - x^2 - x - 1.

Original entry on oeis.org

1, 8, 3, 9, 2, 8, 6, 7, 5, 5, 2, 1, 4, 1, 6, 1, 1, 3, 2, 5, 5, 1, 8, 5, 2, 5, 6, 4, 6, 5, 3, 2, 8, 6, 6, 0, 0, 4, 2, 4, 1, 7, 8, 7, 4, 6, 0, 9, 7, 5, 9, 2, 2, 4, 6, 7, 7, 8, 7, 5, 8, 6, 3, 9, 4, 0, 4, 2, 0, 3, 2, 2, 2, 0, 8, 1, 9, 6, 6, 4, 2, 5, 7, 3, 8, 4, 3, 5, 4, 1, 9, 4, 2, 8, 3, 0, 7, 0, 1, 4
Offset: 1

Views

Author

Robert G. Wilson v, Dec 07 2000

Keywords

Comments

"The tribonacci constant, the only real solution to the equation x^3 - x^2 - x - 1 = 0, which is related to tribonacci sequences (in which U_n = U_n-1 + U_n-2 + U_n-3) as the Golden Ratio is related to the Fibonacci sequence and its generalizations. This ratio also appears when a snub cube is inscribed in an octahedron or a cube, by analogy once again with the appearance of the Golden Ratio when an icosahedron is inscribed in an octahedron. [John Sharp, 1997]"
The tribonacci constant corresponds to the Golden Section in a tripartite division 1 = u_1 + u_2 + u_3 of a unit line segment; i.e., if 1/u_1 = u_1/u_2 = u_2/u_3 = c, c is the tribonacci constant. - Seppo Mustonen, Apr 19 2005
The other two polynomial roots are the complex-conjugated pair -0.4196433776070805662759262... +- i* 0.60629072920719936925934... - R. J. Mathar, Oct 25 2008
For n >= 3, round(q^prime(n)) == 1 (mod 2*prime(n)). Proof in Shevelev link. - Vladimir Shevelev, Mar 21 2014
Concerning orthogonal projections, the tribonacci constant is the ratio of the diagonal of a square to the width of a rhombus projected by rotating a square along its diagonal in 3D until the angle of rotation equals the apparent apex angle at approximately 57.065 degrees (also the corresponding angle in the formula generating A256099). See illustration in the links. - Peter M. Chema, Jan 02 2017
From Wolfdieter Lang, Aug 10 2018: (Start)
Real eigenvalue t of the tribonacci Q-matrix <<1, 1, 1>,<1, 0, 0>,<0, 1, 0>>.
Limit_{n -> oo} T(n+1)/T(n) = t (from the T recurrence), where T = {A000073(n+2)}_{n >= 0}. (End)
The nonnegative powers of t are t^n = T(n)*t^2 + (T(n-1) + T(n-2))*t + T(n-1)*1, for n >= 0, with T(n) = A000073(n), with T(-1) = 1 and T(-2) = -1, This follows from the recurrences derived from t^3 = t^2 + t + 1. See the examples below. For the negative powers see A319200. - Wolfdieter Lang, Oct 23 2018
Note that we have: t + t^(-3) = 2, and the k-nacci constant approaches 2 when k approaches infinity (Martin Gardner). - Bernard Schott, May 16 2022
The roots of this cubic are found from those of y^3 - (4/3)*y - 38/27, after adding 1/3. - Wolfdieter Lang, Aug 24 2022
The algebraic number t - 1 has minimal polynomial x^3 + 2*x^2 - 2 over Q. The roots coincide with those of y^3 - (4/3)*y - 38/27, after subtracting 2/3. - Wolfdieter Lang, Sep 20 2022
The value of the ratio R/r of the radius R of a uniform ball to the radius r of a spherical hole in it with a common point of contact, such that the center of gravity of the object lies on the surface of the spherical hole (Schmidt, 2002). - Amiram Eldar, May 20 2023

Examples

			1.8392867552141611325518525646532866004241787460975922467787586394042032220\
    81966425738435419428307014141979826859240974164178450746507436943831545\
    820499513796249655539644613666121540277972678118941041...
From _Wolfdieter Lang_, Oct 23 2018: (Start)
The coefficients of t^2, t, 1 for t^n begin, for n >= 0:
    n     t^2    t    1
    -------------------
    0      0     0    1
    1      0     1    0
    2      1     0    0
    1      1     1    1
    4      2     2    1
    5      4     3    2
    6      7     6    4
    7     13    11    7
    8     24    20   13
    9     44    37   24
   10     81    68   44
...  (End)
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.2.
  • Martin Gardner, The Second Scientific American Book of Mathematical Puzzles and Diversions, "Phi: The Golden Ratio", Chapter 8, p. 101, Simon & Schuster, NY, 1961.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, page 23.

Crossrefs

Cf. A000073, A019712 (continued fraction), A133400, A254231, A158919 (spectrum = floor(n*t)), A357101 (x^3-2*x^2-2).
Cf. A192918 (reciprocal), A276800 (square), A276801 (cube), A319200.
k-nacci constants: A001622 (Fibonacci), this sequence (tribonacci), A086088 (tetranacci), A103814 (pentanacci), A118427 (hexanacci), A118428 (heptanacci).

Programs

  • Maple
    Digits:=200; fsolve(x^3=x^2+x+1); # N. J. A. Sloane, Mar 16 2019
  • Mathematica
    RealDigits[ N[ 1/3 + 1/3*(19 - 3*Sqrt[33])^(1/3) + 1/3*(19 + 3*Sqrt[33])^(1/3), 100]] [[1]]
    RealDigits[Root[x^3-x^2-x-1,1],10,120][[1]] (* Harvey P. Dale, Mar 23 2019 *)
  • Maxima
    set_display(none)$ fpprec:100$ bfloat(rhs(solve(t^3-t^2-t-1,t)[3])); /* Dimitri Papadopoulos, Nov 09 2023 */
  • PARI
    default(realprecision, 20080); x=solve(x=1, 2, x^3 - x^2 - x - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b058265.txt", n, " ", d));  \\ Harry J. Smith, May 30 2009
    
  • PARI
    q=(1+sqrtn(19+3*sqrt(33),3)+sqrtn(19-3*sqrt(33),3))/3 \\ Use \p# to set 'realprecision'. - M. F. Hasler, Mar 23 2014
    

Formula

t = (1/3)*(1+(19+3*sqrt(33))^(1/3)+(19-3*sqrt(33))^(1/3)). - Zak Seidov, Jun 08 2005
t = 1 - Sum_{k>=1} A057597(k+2)/(T_k*T_(k+1)), where T_n = A000073(n+1). - Vladimir Shevelev, Mar 02 2013
1/t + 1/t^2 + 1/t^3 = 1/A058265 + 1/A276800 + 1/A276801 = 1. - N. J. A. Sloane, Oct 28 2016
t = (4/3)*cosh((1/3)*arccosh(19/8)) + 1/3. - Wolfdieter Lang, Aug 24 2022
t = 2 - Sum_{k>=0} binomial(4*k + 2, k)/((k + 1)*2^(4*k + 3)). - Antonio Graciá Llorente, Oct 28 2024

A001592 Hexanacci numbers: a(n+1) = a(n)+...+a(n-5) with a(0)=...=a(4)=0, a(5)=1.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 976, 1936, 3840, 7617, 15109, 29970, 59448, 117920, 233904, 463968, 920319, 1825529, 3621088, 7182728, 14247536, 28261168, 56058368, 111196417, 220567305, 437513522, 867844316, 1721441096, 3414621024
Offset: 0

Views

Author

Keywords

Comments

a(n+5) is the number of ways of throwing n with an unstated number of standard dice and so the row sum of A061676; for example a(9)=8 is the number of ways of throwing a total of 4: 4, 3+1, 2+2, 1+3, 2+1+1, 1+2+1, 1+1+2 and 1+1+1+1; if order did not distinguish partitions (i.e. the dice were indistinguishable) then this would produce A001402 instead. - Henry Bottomley, Apr 01 2002
Number of permutations (p(i)) [of the numbers 1 to n, presumably? - N. J. A. Sloane, Jan 22 2021] satisfying -k<=p(i)-i<=r, i=1..n-5, with k=1, r=5. - Vladimir Baltic, Jan 17 2005
a(n+5) is the number of compositions of n with no part greater than 6. - Vladimir Baltic, Jan 17 2005
Equivalently, for n>=0: a(n+6) is the number of binary strings with length n where at most 5 ones are consecutive, see fxtbook link below. - Joerg Arndt, Apr 08 2011

References

  • Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 6 of arrays A048887 and A092921 (k-generalized Fibonacci numbers).

Programs

  • Mathematica
    CoefficientList[Series[x^5/(1 - x - x^2 - x^3 - x^4 - x^5 - x^6), {x, 0, 50}], x]
    a[0] = a[1] = a[2] = a[3] = a[4] = 0; a[5] = a[6] = 1; a[n_] := a[n] = 2 a[n - 1] - a[n - 7]; Array[a, 36]
    LinearRecurrence[{1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 1}, 50] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; 1,1,1,1,1,1]^n*[0;0;0;0;0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
    
  • PARI
    a(n)= my(x='x, p=polrecip(1 - x - x^2 - x^3 - x^4 - x^5 - x^6)); polcoef(lift(Mod(x,p)^n),5);
    vector(31,n,a(n-1)) \\ Joerg Arndt, May 16 2021

Formula

G.f.: x^5/(1 - x - x^2 - x^3 - x^4 - x^5 - x^6). - Simon Plouffe in his 1992 dissertation
G.f.: Sum_{n >= 0} x^(n+5) * [ Product_{k = 1..n} (k + k*x + k*x^2 + k*x^3 + k*x^4 + x^5)/(1 + k*x + k*x^2 + k*x^3 + k*x^4 + k*x^5) ]. - Peter Bala, Jan 04 2015
Another form of the g.f.: f(z) = (z^5-z^6)/(1-2*z+z^7); then a(n) = Sum_((-1)^i*binomial(n-5-6*i,i)*2^(n-5-7*i), i=0..floor((n-5)/7))-Sum_((-1)^i*binomial(n-6-6*i,i)*2^(n-6-7*i), i=0..floor((n-6)/7)) with Sum_(alpha(i), i=m..n) = 0 for m>n. - Richard Choulet, Feb 22 2010
Sum_{k=0..5*n} a(k+b)*A063260(n,k) = a(6*n+b), b>=0.
a(n) = 2*a(n-1)-a(n-7). - Vincenzo Librandi, Dec 19 2010
lim n-> oo a(n)/a(n-1) = A118427. - R. J. Mathar, Mar 11 2024

Extensions

More terms from Robert G. Wilson v, Nov 16 2000

A086088 Decimal expansion of the limit of the ratio of consecutive terms in the tetranacci sequence A000078.

Original entry on oeis.org

1, 9, 2, 7, 5, 6, 1, 9, 7, 5, 4, 8, 2, 9, 2, 5, 3, 0, 4, 2, 6, 1, 9, 0, 5, 8, 6, 1, 7, 3, 6, 6, 2, 2, 1, 6, 8, 6, 9, 8, 5, 5, 4, 2, 5, 5, 1, 6, 3, 3, 8, 4, 7, 2, 7, 1, 4, 6, 6, 4, 7, 0, 3, 8, 0, 0, 9, 6, 6, 6, 0, 6, 2, 2, 9, 7, 8, 1, 5, 5, 5, 9, 1, 4, 9, 8, 1, 8, 2, 5, 3, 4, 6, 1, 8, 9, 0, 6, 5, 3, 2, 5
Offset: 1

Views

Author

Eric W. Weisstein, Jul 08 2003

Keywords

Comments

The tetranacci constant corresponds to the Golden Section in a quadripartite division 1 = u_1 + u_2 + u_3 + u_4 of a unit line segment, i.e., if 1/u_1 = u_1/u_2 = u_2/u_3 = u_3/u_4 = c, c is the tetranacci constant. - Seppo Mustonen, Apr 19 2005
The other 3 polynomial roots of 1+x+x^2+x^3-x^4 are -0.77480411321543385... and the complex-conjugated pair -0.07637893113374572508475 +- i * 0.814703647170386526841... - R. J. Mathar, Oct 25 2008
The continued fraction expansion starts 1, 1, 12, 1, 4, 7, 1, 21, 1, 2, 1, 4, 6, 1, 10, 1, 2, 2, 1, 7, 1, 1,... - R. J. Mathar, Mar 09 2012
For n>=4, round(c^prime(n)) == 1 (mod 2*prime(n)). Proof in Shevelev link. - Vladimir Shevelev, Mar 21 2014
Note that we have: c + c^(-4) = 2, and the k-nacci constant approaches 2 when k approaches infinity (Martin Gardner). - Bernard Schott, May 09 2022

Examples

			1.927561975...
		

References

  • Martin Gardner, The Second Scientific American Book Of Mathematical Puzzles and Diversions, "Phi: The Golden Ratio", Chapter 8, p. 101, Simon & Schuster, NY, 1961.

Crossrefs

Cf. A000078.
k-nacci constants: A001622 (Fibonacci), A058265 (tribonacci), this sequence (tetranacci), A103814 (pentanacci), A118427 (hexanacci), A118428 (heptanacci).

Programs

Formula

Equals 1/4 + sqrt(11/48 - s/72 + 7/s) + sqrt(11/24 + s/72 - 7/s + 1 / sqrt(704/507 - 128 * s/1521 + 7168 / (169 * s))) where s = (sqrt(177304464) + 7020)^(1/3). - Michal Paulovic, Oct 08 2022

A103814 Pentanacci constant: decimal expansion of limit of A001591(n+1)/A001591(n).

Original entry on oeis.org

1, 9, 6, 5, 9, 4, 8, 2, 3, 6, 6, 4, 5, 4, 8, 5, 3, 3, 7, 1, 8, 9, 9, 3, 7, 3, 7, 5, 9, 3, 4, 4, 0, 1, 3, 9, 6, 1, 5, 1, 3, 2, 7, 1, 7, 7, 4, 5, 6, 8, 6, 1, 3, 9, 3, 2, 3, 6, 9, 3, 4, 5, 0, 8, 4, 4, 2, 2, 5, 2, 7, 1, 2, 8, 7, 1, 8, 8, 6, 8, 8, 1, 7, 3, 4, 8, 1, 8, 6, 6, 5, 5, 5, 4, 6, 3, 0, 4, 7, 2, 0, 2, 1, 3, 0
Offset: 1

Views

Author

Jonathan Vos Post, Mar 29 2005

Keywords

Comments

The pentanacci constant P is the limit as n -> infinity of the ratio of Pentanacci(n+1)/Pentanacci(n) = A001591(n+1)/A001591(n), which is the principal root of x^5-x^4-x^3-x^2-x-1 = 0. Note that we have: P + P^-5 = 2.
The pentanacci constant corresponds to the Golden Section in a fivepartite division 1 = u_1 + u_2 + u_3 + u_4 + u_5 of a unit line segment, i.e., if 1/u_1 = u_1/u_2 = u_2/u_3 = u_3/u_4 + u_4/u_5 = c, c is the pentanacci constant. - Seppo Mustonen, Apr 19 2005
The other 4 roots of the polynomial 1+x+x^2+x^3+x^4-x^5 are the two complex-conjugated pairs -0.6783507129699967... +- i * 0.458536187273144499.. and 0.1953765946472540452... +- i * 0.848853640546245551858... - R. J. Mathar, Oct 25 2008
The continued fraction expansion is 1, 1, 28, 2, 1, 2, 1, 1, 1, 2, 4, 2, 1, 3, 1, 6, 1, 4, 1, 1, 5, 3, 2, 15, 69, 1, 1, 14, 1, 8, 1, 6,... - R. J. Mathar, Mar 09 2012
For n>=5, round(c^prime(n)) == 1 (mod 2*prime(n)). Proof in Shevelev link. - Vladimir Shevelev, Mar 21 2014
Note that the k-nacci constant approaches 2 when k approaches infinity (Martin Gardner). - Bernard Schott, May 07 2022

Examples

			1.965948236645485337189937375934401396151327177456861393236934508442...
		

References

  • Martin Gardner, The Second Scientific American Book Of Mathematical Puzzles and Diversions, "Phi: The Golden Ratio", Chapter 8, p. 101, Simon & Schuster, NY, 1961.

Crossrefs

Cf. A001591.
k-nacci constants: A001622 (Fibonacci), A058265 (tribonacci), A086088 (tetranacci), this sequence (pentanacci), A118427 (hexanacci), A118428 (heptanacci).

Programs

  • Mathematica
    RealDigits[Root[x^5-Total[x^Range[0,4]],1],10,120][[1]] (* Harvey P. Dale, Mar 22 2017 *)
  • PARI
    solve(x=1, 2, 1+x+x^2+x^3+x^4-x^5) \\ Michel Marcus, Mar 21 2014

A118428 Decimal expansion of heptanacci constant.

Original entry on oeis.org

1, 9, 9, 1, 9, 6, 4, 1, 9, 6, 6, 0, 5, 0, 3, 5, 0, 2, 1, 0, 9, 7, 7, 4, 1, 7, 5, 4, 5, 8, 4, 3, 7, 4, 9, 6, 3, 4, 7, 9, 3, 1, 8, 9, 6, 0, 0, 5, 3, 1, 5, 7, 9, 9, 5, 2, 4, 4, 7, 8, 2, 1, 5, 3, 4, 0, 0, 9, 5, 1, 9, 8, 0, 3, 0, 9, 6, 2, 2, 1, 8, 3, 5, 6, 3, 1, 4, 1, 5, 7, 7, 0, 2, 2, 7, 1, 9, 0, 1, 7, 0, 9, 9, 1, 6
Offset: 1

Views

Author

Eric W. Weisstein, Apr 27 2006

Keywords

Comments

Other roots of the equation x^7 - x^6 - ... - x - 1 see in A239566. For n>=7, round(c^prime(n)) == 1 (mod 2*prime(n)). Proof in Shevelev link. - Vladimir Shevelev, Mar 21 2014
Note that we have: c + c^(-7) = 2, and the k-nacci constant approaches 2 when k approaches infinity (Martin Gardner). - Bernard Schott, May 07 2022

Examples

			1.9919641966050350210...
		

References

  • Martin Gardner, The Second Scientific American Book Of Mathematical Puzzles and Diversions, "Phi: The Golden Ratio", Chapter 8, p. 101, Simon & Schuster, NY, 1961.

Crossrefs

k-nacci constants: A001622 (Fibonacci), A058265 (tribonacci), A086088 (tetranacci), A103814 (pentanacci), A118427 (hexanacci), this sequence (heptanacci).

Programs

  • Mathematica
    RealDigits[x/.FindRoot[x^7+Total[-x^Range[0,6]]==0,{x,2}, WorkingPrecision-> 110]][[1]] (* Harvey P. Dale, Dec 13 2011 *)
  • PARI
    polrootsreal(x^7 - x^6 - x^5 - x^4 - x^3 - x^2 - x - 1)[1] \\ Charles R Greathouse IV, Feb 11 2025

A239640 a(n) is the smallest number such that for n-bonacci constant c_n satisfies round(c_n^prime(m)) == 1 (mod 2*p_m) for every m>=a(n).

Original entry on oeis.org

3, 3, 4, 5, 7, 7, 10, 13, 14, 14, 19, 23, 23, 31, 34, 34, 46, 50, 60, 65, 73, 79, 88, 92, 107, 113, 126, 139, 149, 168, 182, 198, 210, 227, 244, 265, 276, 292, 317, 340, 369, 384, 408, 436, 444, 480, 516, 540, 565, 606, 628, 669, 704, 735, 759, 810, 829, 895, 925
Offset: 2

Views

Author

Keywords

Comments

The n-bonacci constant is a unique root x_1>1 of the equation x^n-x^(n-1)-...-x-1=0. So, for n=2 we have Fibonacci constant phi or golden ratio (A001622); for n=3 we have tribonacci constant (A058265); for n=4 we have tetranacci constant (A086088), for n=5 (A103814), for n=6 (A118427), etc.

Examples

			Let n=2, then c_2 = phi (Fibonacci constant). We have round(c_2^2)=3 is not == 1 (mod 4), round(c_2^3)=4 is not == 1 (mod 6), while round(c_2^5)=11 == 1 (mod 10) and one can prove that for p>=5, we have round(c_2^p) == 1 (mod 2*p). Since 5=prime(3), then a(2)=3.
		

Crossrefs

Showing 1-7 of 7 results.