A118428 Decimal expansion of heptanacci constant.
1, 9, 9, 1, 9, 6, 4, 1, 9, 6, 6, 0, 5, 0, 3, 5, 0, 2, 1, 0, 9, 7, 7, 4, 1, 7, 5, 4, 5, 8, 4, 3, 7, 4, 9, 6, 3, 4, 7, 9, 3, 1, 8, 9, 6, 0, 0, 5, 3, 1, 5, 7, 9, 9, 5, 2, 4, 4, 7, 8, 2, 1, 5, 3, 4, 0, 0, 9, 5, 1, 9, 8, 0, 3, 0, 9, 6, 2, 2, 1, 8, 3, 5, 6, 3, 1, 4, 1, 5, 7, 7, 0, 2, 2, 7, 1, 9, 0, 1, 7, 0, 9, 9, 1, 6
Offset: 1
Examples
1.9919641966050350210...
References
- Martin Gardner, The Second Scientific American Book Of Mathematical Puzzles and Diversions, "Phi: The Golden Ratio", Chapter 8, p. 101, Simon & Schuster, NY, 1961.
Links
- S. Litsyn and Vladimir Shevelev, Irrational Factors Satisfying the Little Fermat Theorem, International Journal of Number Theory, vol.1, no.4 (2005), 499-512.
- Vladimir Shevelev, A property of n-bonacci constant, Seqfan (Mar 23 2014)
- Eric Weisstein's World of Mathematics, Heptanacci Number
- Eric Weisstein's World of Mathematics, Heptanacci Constant
- Index entries for algebraic numbers, degree 7.
Crossrefs
Programs
-
Mathematica
RealDigits[x/.FindRoot[x^7+Total[-x^Range[0,6]]==0,{x,2}, WorkingPrecision-> 110]][[1]] (* Harvey P. Dale, Dec 13 2011 *)
-
PARI
polrootsreal(x^7 - x^6 - x^5 - x^4 - x^3 - x^2 - x - 1)[1] \\ Charles R Greathouse IV, Feb 11 2025
Comments