cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118431 Numerator of sum of reciprocals of first n 5-simplex numbers A000389.

Original entry on oeis.org

1, 7, 17, 69, 625, 209, 329, 247, 357, 1250, 341, 1819, 2379, 3059, 19375, 1211, 1496, 3657, 4427, 53125, 12649, 14949, 17549, 10237, 59375, 6851, 7866, 35959, 40919, 231875, 52359, 14726, 16511, 36907, 205625, 91389, 101269
Offset: 1

Views

Author

Jonathan Vos Post, Apr 28 2006

Keywords

Comments

Denominators are A118432. Fractions are: 1/1, 7/6, 17/14, 69/56, 625/504, 209/168, 329/264, 247/198, 357/286, 1250/1001, 341/273, 1819/1456, 2379/1904, 3059/2448, 19375/15504, 1211/969, 1496/1197, 3657/2926, 4427/3542, 53125/42504, 12649/10120, 14949/11960, 17549/14040, 10237/8190, 59375/47502, 6851/5481, 7866/6293, 35959/28768, 40919/32736, 231875/185504, 52359/41888, 14726/11781, 16511/13209, 36907/29526, 205625/164502, 91389/73112, 101269/81016. The numerator of sum of reciprocals of first n triangular numbers is A026741. The numerator of sum of reciprocals of first n tetrahedral numbers is A118391. The numerator of sum of reciprocals of first n pentatope numbers is A118411.

Examples

			a(1) = 1 = numerator of 1/1.
a(2) = 7 = numerator of 7/6 = 1/1 + 1/6.
a(3) = 17 = numerator of 17/14 = 1/1 + 1/6 + 1/21.
a(4) = 69 = numerator of 69/56 = 1/1 + 1/6 + 1/21 + 1/56.
a(5) = 55 = numerator of 55/42 = 1/1 + 1/6 + 1/21 + 1/56 + 1/126.
a(10) = 1250 = numerator of 1250/1001 = 1/1+ 1/6 + 1/21 + 1/56 + 1/126 + 1/252 + 1/462 + 1/792 + 1/1287 + 1/2002.
a(20) = 53125 = numerator of 53125/42504 = 1/1 + 1/6 + 1/21 + 1/56 + 1/126 + 1/252 + 1/462 + 1/792 + 1/1287 + 1/2002 + 1/3003 + 1/4368 + 1/6188 + 1/8568 + 1/11628 + 1/15504 + 1/20349 + 1/26334 + 1/33649 + 1/42504.
		

Crossrefs

Programs

  • Mathematica
    Numerator[Accumulate[1/Binomial[Range[5, 50], 5]]] (* G. C. Greubel, Nov 21 2017 *)

Formula

A118411(n)/A118412(n) = Sum_{i=1..n} (1/A000389(n)).
A118411(n)/A118412(n) = Sum_{i=1..n} (1/C(n,5)).
A118411(n)/A118412(n) = Sum_{i=1..n} (1/(n*(n+1)*(n+2)*(n+3)*(n+4)/120)).