A118750
a(n) = product[k=1..n] P(k), where P(k) is the largest prime <= 3*k. a(n) = product[k=1..n] A118749(k).
Original entry on oeis.org
3, 15, 105, 1155, 15015, 255255, 4849845, 111546435, 2565568005, 74401472145, 2306445636495, 71499814731345, 2645493145059765, 108465218947450365, 4664004414740365695, 219208207492797187665, 10302785752161467820255
Offset: 1
A118456
a(n) = Product_{k=1..n} P(k), where P(k) is the smallest prime >= k.
Original entry on oeis.org
2, 4, 12, 60, 300, 2100, 14700, 161700, 1778700, 19565700, 215222700, 2797895100, 36372636300, 618334817100, 10511691890700, 178698762141900, 3037878956412300, 57719700171833700, 1096674303264840300, 25223508975091326900, 580140706427100518700, 13343236247823311930100
Offset: 1
a(5)=300 because the smallest primes that are not smaller than 1,2,3,4 and 5 are 2,2,3,5 and 5, respectively, having product 2*2*3*5*5=300.
-
a:=n->product(nextprime(k-1),k=1..n): seq(a(n),n=1..22); # Emeric Deutsch, Apr 29 2006
-
FoldList[Times, Table[NextPrime[k - 1], {k, 22}]] (* Michael De Vlieger, Aug 21 2017 *)
-
a(n) = prod(k=1, n, nextprime(k)); \\ Michel Marcus, Aug 20 2019
A118747
a(n) = product[k=1..n] P(k), where P(k) is the largest prime <= 2*k. a(n) = product[k=1..n] A060308(k).
Original entry on oeis.org
2, 6, 30, 210, 1470, 16170, 210210, 2732730, 46456410, 882671790, 16770764010, 385727572230, 8871734161290, 204049885709670, 5917446685580430, 183440847252993330, 5686666264842793230, 176286654210126590130
Offset: 1
A118752
a(n) = product[k=0..n] P(k), where P(k) is the smallest prime > 3*n. a(n) = product[k=0..n] A118751(k).
Original entry on oeis.org
2, 10, 70, 770, 10010, 170170, 3233230, 74364290, 2156564410, 62540367890, 1938751404590, 71733801969830, 2654150672883710, 108820177588232110, 4679267636293980730, 219925578905817094310, 11656055682008305998430
Offset: 0
-
Rest[FoldList[Times,1,Table[NextPrime[3n],{n,0,20}]]] (* Harvey P. Dale, Mar 09 2014 *)
A118748
a(n) = Product_{k=1..n} P(k), where P(k) is the smallest prime >= 2*k.
Original entry on oeis.org
2, 10, 70, 770, 8470, 110110, 1871870, 31821790, 604614010, 13906122230, 319840811290, 9275383527410, 268986122294890, 7800597546551810, 241818523943106110, 8947285385894926070, 331049559278112264590
Offset: 1
Showing 1-5 of 5 results.
Comments