A118503 Sum of digits of prime factors of n, with multiplicity.
0, 2, 3, 4, 5, 5, 7, 6, 6, 7, 2, 7, 4, 9, 8, 8, 8, 8, 10, 9, 10, 4, 5, 9, 10, 6, 9, 11, 11, 10, 4, 10, 5, 10, 12, 10, 10, 12, 7, 11, 5, 12, 7, 6, 11, 7, 11, 11, 14, 12, 11, 8, 8, 11, 7, 13, 13, 13, 14, 12, 7, 6, 13, 12, 9, 7, 13, 12, 8, 14, 8, 12, 10, 12, 13, 14, 9, 9, 16, 13
Offset: 1
Examples
a(22) = 4 because 22 = 2 * 11 and the digital sum of 2 + the digital sum of 11 = 2 + 2 = 4. a(121) = 4 because 121 = 11^2 = 11 * 11, summing the digits of the prime factors with multiplicity gives A007953(11) + A007953(11) = 2 + 2 = 4. a(1000) = 21 because = 2^3 * 5^3 = 2 * 2 * 2 * 5 * 5 * 5 and 2 + 2 + 2 + 5 + 5 + 5 = 21, as opposed to A095402(1000) = 7.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000 (terms 1..5000 from G. C. Greubel)
Programs
-
Maple
A118503 := proc(n) local a; a := 0 ; for p in ifactors(n)[2] do a := a+ op(2, p)*A007953(op(1, p)) ; end do: a ; end proc: # R. J. Mathar, Sep 14 2011
-
Mathematica
sdpf[n_]:=Total[Flatten[IntegerDigits/@Flatten[Table[#[[1]],{#[[2]]}]&/@FactorInteger[n]]]]; Join[{0},Array[sdpf,100,2]] (* Harvey P. Dale, Sep 19 2013 *)
-
PARI
A118503(n) = { my(f=factor(n)); sum(i=1, #f~, f[i, 2]*sumdigits(f[i, 1])); }; \\ Antti Karttunen, Jun 08 2024
Formula
a(n) = Sum_{i=1..k} (e_i)*A007953(p_i) where prime decomposition of n = (p_1)^(e_1) * (p_2)^(e_2) * ... * (p_k)^(e_k).
Extensions
a(0) removed by Joerg Arndt at the suggestion of Antti Karttunen, Jun 08 2024
Comments