cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118576 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+16807)^2 = y^2.

Original entry on oeis.org

0, 2145, 3773, 6468, 8540, 12005, 19208, 24521, 28665, 35672, 41148, 50421, 61388, 69972, 84525, 95921, 115248, 156065, 186480, 210308, 250733, 282405, 336140, 399797, 449673, 534296, 600600, 713097, 950796, 1127973, 1266797, 1502340
Offset: 1

Views

Author

Mohamed Bouhamida, May 16 2006

Keywords

Comments

Also values x of Pythagorean triples (x, x+16807, y); 16807 = 7^5.
Corresponding values y of solutions (x, y) are in A156713.
Limit_{n -> oo} a(n)/a(n-11) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^5 / (3+2*sqrt(2))^2 for n mod 11 = {1, 2, 4, 6, 8, 10}.
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2))^3 / ((9+4*sqrt(2))/7)^7 for n mod 11 = {0, 3, 5, 9}.
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2)) / ((9+4*sqrt(2))/7)^2 for n mod 11 = 7.

Crossrefs

Cf. A156713, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7).

Programs

  • PARI
    {forstep(n=0, 1600000, [1, 3], if(issquare(2*n^2 + 33614*n + 282475249), print1(n, ",")))}

Formula

a(n) = 6*a(n-11)-a(n-22)+33614 for n > 22; a(1) = 0, a(2) = 2145, a(3) = 3773, a(4) = 6468, a(5) = 8540, a(6) = 12005, a(7) = 19208, a(8) = 24521, a(9) = 28665, a(10) = 35672, a(11) = 41148, a(12) = 50421, a(13) = 61388, a(14) = 69972, a(15) = 84525, a(16) = 95921, a(17) = 115248, a(18) = 156065, a(19) = 186480, a(20) = 210308, a(21) = 250733, a(22) = 282405.
G.f.: x*(2145+1628*x+2695*x^2+2072*x^3+3465*x^4+7203*x^5+5313*x^6+4144*x^7+7007*x^8+5476*x^9+9273*x^10-1903*x^11-1184*x^12-1617*x^13-1036*x^14-1463*x^15-2401*x^16-1463*x^17 -1036*x^18-1617*x^19-1184*x^20-1903*x^21 )/((1-x)*(1-6*x^11+x^22)).

Extensions

Edited by Klaus Brockhaus, Feb 14 2009