A118611
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+343)^2 = y^2.
Original entry on oeis.org
0, 77, 132, 245, 392, 585, 728, 1029, 1428, 1725, 2352, 3185, 4292, 5117, 6860, 9177, 10904, 14553, 19404, 25853, 30660, 40817, 54320, 64385, 85652, 113925, 151512, 179529, 238728, 317429, 376092, 500045, 664832, 883905, 1047200, 1392237, 1850940, 2192853
Offset: 1
132^2+(132+343)^2 = 17424+225625 = 243049 = 493^2.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,6,-6,0,0,0,0,0,-1,1).
-
LinearRecurrence[{1, 0, 0, 0, 0, 0, 6, -6, 0, 0, 0, 0, 0, -1, 1}, {0, 77, 132, 245, 392, 585, 728, 1029, 1428, 1725, 2352, 3185, 4292, 5117, 6860}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
-
{forstep(n=0, 1400000, [1, 3], if(issquare(n^2+(n+343)^2), print1(n, ",")))}
A118630
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+2401)^2 = y^2.
Original entry on oeis.org
0, 539, 924, 1220, 1715, 2744, 3503, 4095, 5096, 7203, 9996, 12075, 13703, 16464, 22295, 26640, 30044, 35819, 48020, 64239, 76328, 85800, 101871, 135828, 161139, 180971, 214620, 285719, 380240, 450695, 505899, 599564, 797475, 944996, 1060584
Offset: 1
924^2+(924+2401)^2 = 853776+11055625 = 11909401 = 3451^2.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,6,-6,0,0,0,0,0,0,0,-1,1).
-
{forstep(n=0, 1100000, [3 ,1], if(issquare(n^2+(n+2401)^2), print1(n, ",")))}
A201916
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+2737)^2 = y^2.
Original entry on oeis.org
0, 75, 203, 323, 552, 708, 1020, 1127, 1311, 1428, 1608, 1820, 1955, 2336, 2675, 3128, 3311, 3627, 3927, 4140, 4508, 4743, 5535, 6003, 6800, 7280, 7848, 8211, 8588, 9240, 9860, 11063, 11895, 13583, 14168, 15180, 15827, 16827, 18011, 18768, 20915, 22836
Offset: 1
-
d = 2737; terms = 100; t = Select[Range[0, 55000], IntegerQ[Sqrt[#^2 + (#+d)^2]] &]; Do[AppendTo[t, t[[-1]] + 6*t[[-27]] - 6*t[[-28]] - t[[-54]] + t[[-55]]], {terms-55}]; t
A156713
Positive numbers y such that y^2 is of the form x^2+(x+16807)^2 with integer x.
Original entry on oeis.org
12005, 12467, 12985, 14063, 15025, 16807, 19073, 20923, 24157, 26747, 31213, 40817, 48055, 53753, 63455, 71077, 84035, 99413, 111475, 131957, 148015, 175273, 232897, 275863, 309533, 366667, 411437, 487403, 577405, 647927, 767585, 861343
Offset: 1
(-7203, a(1)) = (-7203, 12005) is a solution: (-7203)^2+(-7203+16807)^2 = 51883209+92236816 = 144120025 = 12005^2.
(A118576(1), a(6)) = (0, 16807) is a solution: 0^2+(0+16807)^2 = 258791569 = 16807^2.
(A118576(3), a(8)) = (3773, 20923) is a solution: 3773^2+(3773+16807)^2 = 14235529+423536400 = 437771929 = 20923^2.
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
-
CoefficientList[Series[(1-x)(12005+24472x+37457x^2+51520x^3+66545x^4+83352x^5+ 102425x^6+123348x^7+147505x^8+ 174252x^9+205465x^10+ 174252x^11+ 147505x^12+ 123348x^13+ 102425x^14+83352x^15+66545x^16+51520x^17+ 37457x^18+ 24472x^19+ 12005x^20)/(1-6x^11+x^22),{x,0,40}],x] (* or *) LinearRecurrence[{0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,-1},{12005,12467,12985,14063,15025,16807,19073,20923,24157,26747,31213,40817,48055,53753,63455,71077,84035,99413,111475,131957,148015,175273},40] (* Harvey P. Dale, Oct 02 2021 *)
-
{forstep(n=-7220, 700000, [1, 3], if(issquare(2*n^2+33614*n+282475249, &k),print1(k, ",")))}
Showing 1-4 of 4 results.
Comments