cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A118611 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+343)^2 = y^2.

Original entry on oeis.org

0, 77, 132, 245, 392, 585, 728, 1029, 1428, 1725, 2352, 3185, 4292, 5117, 6860, 9177, 10904, 14553, 19404, 25853, 30660, 40817, 54320, 64385, 85652, 113925, 151512, 179529, 238728, 317429, 376092, 500045, 664832, 883905, 1047200, 1392237, 1850940, 2192853
Offset: 1

Views

Author

Mohamed Bouhamida, May 08 2006

Keywords

Comments

Also values x of Pythagorean triples (x, x+343, y); 343=7^3.
Corresponding values y of solutions (x, y) are in A157246.
Limit_{n -> oo} a(n)/a(n-7) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2)) / ((9+4*sqrt(2))/7)^2 for n mod 7 = {1, 2, 4, 5, 6}.
Limit_{n -> oo} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^5 / (3+2*sqrt(2))^2 for n mod 7 = {0, 3}.

Examples

			132^2+(132+343)^2 = 17424+225625 = 243049 = 493^2.
		

Crossrefs

Cf. A157246, A001652, A118576, A118554, A118611, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7).

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 6, -6, 0, 0, 0, 0, 0, -1, 1}, {0, 77, 132, 245, 392, 585, 728, 1029, 1428, 1725, 2352, 3185, 4292, 5117, 6860}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
  • PARI
    {forstep(n=0, 1400000, [1, 3], if(issquare(n^2+(n+343)^2), print1(n, ",")))}

Formula

a(n) = 6*a(n-7)-a(n-14)+686 for n > 14; a(1)=0, a(2)=77, a(3)=132, a(4)=245, a(5)=392, a(6)=585, a(7)=728, a(8)=1029, a(9)=1428, a(10)=1725, a(11)=2352, a(12)=3185, a(13)=4292, a(14)=5117.
G.f.: x*(77+55*x+113*x^2+147*x^3+193*x^4+143*x^5+301*x^6-63*x^7 -33*x^8-51*x^9-49*x^10-51*x^11-33*x^12-63*x^13)/((1-x)*(1-6*x^7+x^14)).
a(7*k+1) = 343*A001652(k) for k >= 0.

Extensions

Edited by Klaus Brockhaus, Feb 25 2009

A118630 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+2401)^2 = y^2.

Original entry on oeis.org

0, 539, 924, 1220, 1715, 2744, 3503, 4095, 5096, 7203, 9996, 12075, 13703, 16464, 22295, 26640, 30044, 35819, 48020, 64239, 76328, 85800, 101871, 135828, 161139, 180971, 214620, 285719, 380240, 450695, 505899, 599564, 797475, 944996, 1060584
Offset: 1

Views

Author

Mohamed Bouhamida, May 09 2006

Keywords

Comments

Also values x of Pythagorean triples (x, x+2401, y); 2401=7^4.
Corresponding values y of solutions (x, y) are in A157247.
Limit_{n -> oo} a(n)/a(n-9) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2)) / ((9+4*sqrt(2))/7)^2 for n mod 9 = {1, 2, 6}.
Limit_{n -> oo} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^5 / (3+2*sqrt(2))^2 for n mod 9 = {0, 3, 5, 7}.
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2))^3 / ((9+4*sqrt(2))/7)^7 for n mod 9 = {4, 8}.

Examples

			924^2+(924+2401)^2 = 853776+11055625 = 11909401 = 3451^2.
		

Crossrefs

Cf. A157247, A001652, A118576, A118554, A118611, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7).

Programs

  • PARI
    {forstep(n=0, 1100000, [3 ,1], if(issquare(n^2+(n+2401)^2), print1(n, ",")))}

Formula

a(n) = 6*a(n-9)-a(n-18)+4802 for n > 18; a(1)=0, a(2)=539, a(3)=924, a(4)=1220, a(5)=1715, a(6)=2744, a(7)=3503, a(8)=4095, a(9)=5096, a(10)=7203, a(11)=9996, a(12)=12075, a(13)=13703, a(14)=16464,a (15)=22295, a(16)=26640, a(17)=30044, a(18)=35819.
G.f.: x*(539+385*x+296*x^2+495*x^3+1029*x^4+759*x^5+592*x^6 +1001*x^7+2107*x^8-441*x^9-231*x^10-148*x^11-209*x^12-343*x^13 -209*x^14-148*x^15-231*x^16-441*x^17) / ((1-x)*(1-6*x^9+x^18)).
a(9*k+1) = 2401*A001652(k) for k >= 0.

Extensions

Edited by Klaus Brockhaus, Feb 25 2009

A201916 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+2737)^2 = y^2.

Original entry on oeis.org

0, 75, 203, 323, 552, 708, 1020, 1127, 1311, 1428, 1608, 1820, 1955, 2336, 2675, 3128, 3311, 3627, 3927, 4140, 4508, 4743, 5535, 6003, 6800, 7280, 7848, 8211, 8588, 9240, 9860, 11063, 11895, 13583, 14168, 15180, 15827, 16827, 18011, 18768, 20915, 22836
Offset: 1

Views

Author

T. D. Noe, Feb 09 2012

Keywords

Comments

Note that 2737 = 7 * 17 * 23, the product of the first three distinct primes in A058529 (and A001132) and hence the smallest such number. This sequence satisfies a linear difference equation of order 55 whose 55 initial terms can be found by running the Mathematica program.
There are many sequences like this one. What determines the order of the linear difference equation? All primes p have order 7. For those p, it appears that p^2 has order 11, p^3 order 15, and p^i order 3+4*i. It appears that for semiprimes p*q (with p > q), the order is 19. What is the next term of the sequence beginning 3, 7, 19, 55, 163? This could be sequence A052919, which is 1 + 2*3^f, where f is the number of primes.
The crossref list is thought to be complete up to Feb 14 2012.

Crossrefs

Cf. A001652 (1), A076296 (7), A118120 (17), A118337 (23), A118674 (31).
Cf. A129288 (41), A118675 (47), A118554 (49), A118673 (71), A129289 (73).
Cf. A118676 (79), A129298 (89), A129836 (97), A157119 (103), A161478 (113).
Cf. A129837 (119), A129992 (127), A129544 (137), A161482 (151).
Cf. A206426 (161), A130608 (167), A161486 (191), A185394 (193).
Cf. A129993 (199), A198294 (217), A130609 (223), A129625 (233).
Cf. A204765 (239), A129991 (241), A207058 (263), A129626 (281).
Cf. A205644 (287), A207059 (289), A129640 (313), A205672 (329).
Cf. A129999 (337), A118611 (343), A130610 (359), A207060 (401).
Cf. A129641 (409), A207061 (433), A130645 (439), A130004 (449).
Cf. A129642 (457), A129725 (521), A101152 (569), A130005 (577).
Cf. A207075 (479), A207076 (487), A207077 (497), A207078 (511).
Cf. A111258 (601), A115135 (617), A130013 (647), A130646 (727).
Cf. A122694 (761), A123654 (809), A129010 (833), A130647 (839).
Cf. A129857 (857), A130014 (881), A129974 (937), A129975 (953).
Cf. A130017 (967), A118630 (2401), A118576 (16807).

Programs

  • Mathematica
    d = 2737; terms = 100; t = Select[Range[0, 55000], IntegerQ[Sqrt[#^2 + (#+d)^2]] &]; Do[AppendTo[t, t[[-1]] + 6*t[[-27]] - 6*t[[-28]] - t[[-54]] + t[[-55]]], {terms-55}]; t

Formula

a(n) = a(n-1) + 6*a(n-27) - 6*a(n-28) - a(n-54) + a(n-55), where the 55 initial terms can be computed using the Mathematica program.
G.f.: x^2*(73*x^53 +116*x^52 +100*x^51 +171*x^50 +104*x^49 +184*x^48 +57*x^47 +92*x^46 +55*x^45 +80*x^44 +88*x^43 +53*x^42 +139*x^41 +113*x^40 +139*x^39 +53*x^38 +88*x^37 +80*x^36 +55*x^35 +92*x^34 +57*x^33 +184*x^32 +104*x^31 +171*x^30 +100*x^29 +116*x^28 +73*x^27 -363*x^26 -568*x^25 -480*x^24 -797*x^23 -468*x^22 -792*x^21 -235*x^20 -368*x^19 -213*x^18 -300*x^17 -316*x^16 -183*x^15 -453*x^14 -339*x^13 -381*x^12 -135*x^11 -212*x^10 -180*x^9 -117*x^8 -184*x^7 -107*x^6 -312*x^5 -156*x^4 -229*x^3 -120*x^2 -128*x -75) / ((x -1)*(x^54 -6*x^27 +1)). - Colin Barker, May 18 2015

A156713 Positive numbers y such that y^2 is of the form x^2+(x+16807)^2 with integer x.

Original entry on oeis.org

12005, 12467, 12985, 14063, 15025, 16807, 19073, 20923, 24157, 26747, 31213, 40817, 48055, 53753, 63455, 71077, 84035, 99413, 111475, 131957, 148015, 175273, 232897, 275863, 309533, 366667, 411437, 487403, 577405, 647927, 767585, 861343
Offset: 1

Views

Author

Klaus Brockhaus, Feb 17 2009

Keywords

Comments

(-7203, a(1)), (-5740, a(2)), (-4704, a(3)), (-3087, a(4)), (-1903, a(5)), and (A118576(n), a(n+5)) are solutions (x, y) to the Diophantine equation x^2+(x+16807)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-11) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2)) / ((9+4*sqrt(2))/7)^2 for n mod 11 = 1.
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^5 / (3+2*sqrt(2))^2 for n mod 11 = {0, 2, 4, 6, 7, 9}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))^3 / ((9+4*sqrt(2))/7)^7 for n mod 11 = {3, 5, 8, 10}.

Examples

			(-7203, a(1)) = (-7203, 12005) is a solution: (-7203)^2+(-7203+16807)^2 = 51883209+92236816 = 144120025 = 12005^2.
(A118576(1), a(6)) = (0, 16807) is a solution: 0^2+(0+16807)^2 = 258791569 = 16807^2.
(A118576(3), a(8)) = (3773, 20923) is a solution: 3773^2+(3773+16807)^2 = 14235529+423536400 = 437771929 = 20923^2.
		

Crossrefs

Cf. A118576, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7).

Programs

  • Mathematica
    CoefficientList[Series[(1-x)(12005+24472x+37457x^2+51520x^3+66545x^4+83352x^5+ 102425x^6+123348x^7+147505x^8+ 174252x^9+205465x^10+ 174252x^11+ 147505x^12+ 123348x^13+ 102425x^14+83352x^15+66545x^16+51520x^17+ 37457x^18+ 24472x^19+ 12005x^20)/(1-6x^11+x^22),{x,0,40}],x] (* or *) LinearRecurrence[{0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,-1},{12005,12467,12985,14063,15025,16807,19073,20923,24157,26747,31213,40817,48055,53753,63455,71077,84035,99413,111475,131957,148015,175273},40] (* Harvey P. Dale, Oct 02 2021 *)
  • PARI
    {forstep(n=-7220, 700000, [1, 3], if(issquare(2*n^2+33614*n+282475249, &k),print1(k, ",")))}

Formula

a(n) = 6*a(n-11)-a(n-22) for n > 22; a(1) = 12005, a(2) = 12467, a(3) = 12985, a(4) = 14063, a(5) = 15025, a(6) = 16807, a(7) = 19073, a(8) = 20923, a(9) = 24157, a(10) = 26747, a(11) = 31213, a(12) = 40817, a(13) = 48055, a(14) = 53753, a(15) = 63455, a(16) = 71077, a(17) = 84035, a(18) = 99413, a(19) = 111475, a(20) = 131957, a(21) = 148015, a(22) = 175273.
G.f.: (1-x)*(12005 +24472*x+37457*x^2+51520*x^3+66545*x^4+83352*x^5+102425*x^6+123348*x^7+147505*x^8+174252*x^9+205465*x^10+174252*x^11+147505*x^12+123348*x^13+102425*x^14+83352*x^15+66545*x^16+51520*x^17 +37457*x^18+24472*x^19+12005*x^20)/(1-6*x^11+x^22).
Showing 1-4 of 4 results.