A118120
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+17)^2 = y^2.
Original entry on oeis.org
0, 7, 28, 51, 88, 207, 340, 555, 1248, 2023, 3276, 7315, 11832, 19135, 42676, 69003, 111568, 248775, 402220, 650307, 1450008, 2344351, 3790308, 8451307, 13663920, 22091575, 49257868, 79639203, 128759176, 287095935, 464171332, 750463515, 1673317776
Offset: 0
-
[ n: n in [0..25000000] | IsSquare(2*n*(n+17)+289) ];
-
Select[Range[0,100000],IntegerQ[Sqrt[#^2+(#+17)^2]]&] (* or *) LinearRecurrence[{1,0,6,-6,0,-1,1},{0,7,28,51,88,207,340},50] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
-
m=32; v=concat([0, 7, 28, 51, 88, 207], vector(m-6)); for(n=7, m, v[n]=6*v[n-3]-v[n-6]+34); v
A129837
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+119)^2 = y^2.
Original entry on oeis.org
0, 24, 49, 57, 85, 136, 180, 196, 261, 357, 481, 616, 660, 816, 1105, 1357, 1449, 1824, 2380, 3100, 3885, 4141, 5049, 6732, 8200, 8736, 10921, 14161, 18357, 22932, 24424, 29716, 39525, 48081, 51205, 63940, 82824, 107280, 133945, 142641, 173485, 230656
Offset: 1
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 6, -6, 0, 0, 0, 0, 0, 0, 0, -1, 1).
-
LinearRecurrence[{1,0,0,0,0,0,0,0,6,-6,0,0,0,0,0,0,0,-1,1}, {0,24,49,57,85,136,180,196,261,357,481,616,660,816,1105,1357,1449,1824,2380}, 140] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2012 *)
-
{forstep(n=0, 240000, [1, 3], if(issquare(n^2+(n+119)^2), print1(n, ",")))}
A201916
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+2737)^2 = y^2.
Original entry on oeis.org
0, 75, 203, 323, 552, 708, 1020, 1127, 1311, 1428, 1608, 1820, 1955, 2336, 2675, 3128, 3311, 3627, 3927, 4140, 4508, 4743, 5535, 6003, 6800, 7280, 7848, 8211, 8588, 9240, 9860, 11063, 11895, 13583, 14168, 15180, 15827, 16827, 18011, 18768, 20915, 22836
Offset: 1
-
d = 2737; terms = 100; t = Select[Range[0, 55000], IntegerQ[Sqrt[#^2 + (#+d)^2]] &]; Do[AppendTo[t, t[[-1]] + 6*t[[-27]] - 6*t[[-28]] - t[[-54]] + t[[-55]]], {terms-55}]; t
A157247
Positive numbers y such that y^2 is of the form x^2+(x+2401)^2 with integer x.
Original entry on oeis.org
1715, 1781, 1855, 2009, 2401, 2989, 3451, 3821, 4459, 5831, 6865, 7679, 9065, 12005, 15925, 18851, 21145, 25039, 33271, 39409, 44219, 52381, 69629, 92561, 109655, 123049, 145775, 193795, 229589, 257635, 305221, 405769, 539441, 639079, 717149
Offset: 1
(-1029, a(1)) = (-1029, 1715) is a solution: (-1029)^2+(-1029+2401)^2 = 1058841+1882384 = 2941225 = 1715^2.
(A118630(1), a(5)) = (0, 2401) is a solution: 0^2+(0+2401)^2 = 5764801 = 2401^2.
(A118630(3), a(7)) = (924, 3451) is a solution: 924^2+(924+2401)^2 = 853776+11055625 = 11909401 = 3451^2.
-
Sqrt[#]&/@Select[Table[2x^2+4802x+5764801,{x,-1200,510000}], IntegerQ[ Sqrt[ #]]&] (* Harvey P. Dale, Jul 21 2011 *)
-
{forstep(n=-1032, 540000, [3 ,1], if(issquare(n^2+(n+2401)^2, &k), print1(k, ",")))}
Showing 1-4 of 4 results.
Comments