cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A118673 Positive solutions x to the equation x^2 + (x+71)^2 = y^2.

Original entry on oeis.org

0, 13, 160, 213, 280, 1113, 1420, 1809, 6660, 8449, 10716, 38989, 49416, 62629, 227416, 288189, 365200, 1325649, 1679860, 2128713, 7726620, 9791113, 12407220, 45034213, 57066960, 72314749, 262478800, 332610789, 421481416, 1529838729, 1938597916, 2456573889
Offset: 0

Views

Author

Mohamed Bouhamida, May 19 2006

Keywords

Comments

Consider all Pythagorean triples (x,x+71,y) ordered by increasing y; sequence gives x values.
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2 the associated value in A066049, the x values are given by the sequence defined by: a(n) = 6*a(n-3) -a(n-6) + 2*p with a(0)=0, a(1)=2m+1, a(2)=6m^2-10m+4, a(3)=3p, a(4)=6m^2+10m+4, a(5)=40m^2-58m+21.
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(0)=p, b(1)=2m^2+2m+1, b(2)=10m^2-14m+5, b(3)=5p, b(4)=10m^2+14m+5, b(5)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009

Crossrefs

Cf. A076296 (p=7), A118120 (p=17), A118674 (p=31), A129836 (p=97), A129992 (p=127), A129993 (p=199), A129991 (p=241), A129999 (p=337), A130004 (p=449), A130005 (p=577), A130013 (p=647), A130014 (p=881), A130017 (p=967).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(13+147*x+53*x^2-11*x^3-49*x^4-11*x^5)/((1-x)*(1 - 6*x^3 +x^6)))); // G. C. Greubel, May 07 2018
  • Mathematica
    Select[Range[0,100000],IntegerQ[Sqrt[#^2+(#+71)^2]]&] (* or *) LinearRecurrence[{1,0,6,-6,0,-1,1},{0,13,160,213,280,1113,1420},100] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
  • PARI
    a(n)=([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; 1,-1,0,-6,6,0,1]^n*[0;13;160;213;280;1113;1420])[1,1] \\ Charles R Greathouse IV, Apr 22 2016
    
  • PARI
    x='x+O('x^30); concat([0], Vec(x*(13+147*x+53*x^2-11*x^3 -49*x^4 -11*x^5)/((1-x)*(1-6*x^3+x^6)))) \\ G. C. Greubel, May 07 2018
    

Formula

a(n) = 6*a(n-3) -a(n-6) +142 with a(0)=0, a(1)=13, a(2)=160, a(3)=213, a(4)=280, a(5)=1113.
O.g.f.: x*(13+147*x+53*x^2-11*x^3-49*x^4-11*x^5)/((1-x)*(1-6*x^3+x^6)). - R. J. Mathar, Jun 10 2008

Extensions

Edited by R. J. Mathar, Jun 10 2008

A155923 Positive numbers y such that y^2 is of the form x^2+(x+17)^2 with integer x.

Original entry on oeis.org

13, 17, 25, 53, 85, 137, 305, 493, 797, 1777, 2873, 4645, 10357, 16745, 27073, 60365, 97597, 157793, 351833, 568837, 919685, 2050633, 3315425, 5360317, 11951965, 19323713, 31242217, 69661157, 112626853, 182092985, 406014977, 656437405
Offset: 1

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Comments

(-5,a(1)) and (A118120(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+17)^2 = y^2. (Offset 1 is assumed for A118120.)
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (19+6*sqrt(2))/17 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (387+182*sqrt(2))/17^2 for n mod 3 = 1.
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, the x values are given by the sequence defined by: a(n)=6*a(n-3)-a(n-6)+2p with a(1)=0, a(2)=2m+1, a(3)=6m^2-10m+4, a(4)=3p, a(5)=6m^2+10m+4, a(6)=40m^2-58m+21.Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(1)=p, b(2)=2*m^2+2m+1, b(3)=10m^2-14m+5, b(4)=5p, b(5)=10m^2+14m+5, b(6)=58m^2-82m+29. [From Mohamed Bouhamida, Sep 09 2009]

Examples

			(-5,a(1)) = (-5,13) is a solution: (-5)^2+(-5+17)^2 = 25+144 = 169 = 13^2;
(A118120(1), a(2)) = (0, 17) is a solution: 0^2+(0+17)^2 = 289 = 17^2;
(A118120(2), a(3)) = (7, 25) is a solution: 7^2+(7+17)^2 = 49+576 = 625 = 25^2.
		

Crossrefs

Cf. A118120, A156035 (decimal expansion of 3+2*sqrt(2)), A156163 (decimal expansion of (19+6*sqrt(2))/17), A157649 (decimal expansion of (387+182*sqrt(2))/17^2).
Cf. A156156 (first trisection), A156157 (second trisection), A156158 (third trisection).

Programs

  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1},{13,17,25,53,85,137},50] (* Harvey P. Dale, Feb 11 2015 *)
  • PARI
    {forstep(n=-5, 660000000, [1,3], if(issquare(2*n*(n+17)+289, &k), print1(k, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1) = 13, a(2) = 17, a(3) = 25, a(4) = 53, a(5) = 85, a(6) = 137.
G.f.: x*(1-x)*(13+30*x+55*x^2+30*x^3+13*x^4)/(1-6*x^3+x^6).

Extensions

G.f. corrected, first and fourth comment and examples edited, cross-reference added by Klaus Brockhaus, Sep 22 2009

A155464 a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) for n > 2; a(0) = 0, a(1) = 51, a(2) = 340.

Original entry on oeis.org

0, 51, 340, 2023, 11832, 69003, 402220, 2344351, 13663920, 79639203, 464171332, 2705388823, 15768161640, 91903581051, 535653324700, 3122016367183, 18196444878432, 106056652903443, 618143472542260, 3602804182350151
Offset: 0

Views

Author

Klaus Brockhaus, Jan 30 2009

Keywords

Comments

lim_{n -> infinity} a(n+1)/a(n) = 3+2*sqrt(2).

Crossrefs

First trisection of A118120. Equals 17*A001652.
Cf. A155465, A155466, A156035 (decimal expansion of 3+2*sqrt(2)).

Programs

  • Magma
    I:=[0,51,340]; [n le 3 select I[n] else 7*Self(n-1) - 7*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Aug 21 2018
  • Mathematica
    LinearRecurrence[{7,-7,1},{0,51,340},30] (* Harvey P. Dale, Jun 10 2013 *)
    Table[17*(LucasL[2*n+1,2] - 2)/4, {n, 0, 50}] (* G. C. Greubel, Aug 21 2018 *)
  • PARI
    {m=20; v=concat([0, 51, 340], vector(m-3)); for(n=4, m, v[n]=7*v[n-1]-7*v[n-2]+v[n-3]); v}
    

Formula

a(n) = 6*a(n-1) - a(n-2) + 34 for n > 1; a(0) = 0, a(1) = 51.
a(n) = ((1+sqrt(2))*(3+2*sqrt(2))^n + (1-sqrt(2))*(3-2*sqrt(2))^n -2)*(17/4).
G.f.: 17*x*(3-x)/((1-x)*(1-6*x+x^2)).
a(n) = 17*(A002203(2*n+1) - 2)/4. - G. C. Greubel, Aug 21 2018

Extensions

Comment and recursion formula added, cross-references edited by Klaus Brockhaus, Sep 23 2009

A155465 a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) for n > 2; a(0) = 7, a(1) = 88, a(2) = 555.

Original entry on oeis.org

7, 88, 555, 3276, 19135, 111568, 650307, 3790308, 22091575, 128759176, 750463515, 4374021948, 25493668207, 148587987328, 866034255795, 5047617547476, 29419671029095, 171470408627128, 999402780733707, 5824946275775148
Offset: 0

Views

Author

Klaus Brockhaus, Jan 30 2009

Keywords

Comments

lim_{n -> infinity} a(n+1)/a(n) = 3+2*sqrt(2).

Crossrefs

Second trisection of A118120. Cf. A001652.
Cf. A155464, A155466, A156035 (decimal expansion of 3+2*sqrt(2)).

Programs

  • Magma
    I:=[7,88,555]; [n le 3 select I[n] else 7*Self(n-1) - 7*Self(n-2) + Self(n-3): n in [1..50]]; // G. C. Greubel, Aug 21 2018
  • Mathematica
    LinearRecurrence[{7,-7,1},{7,88,555},30] (* Harvey P. Dale, Apr 29 2012 *)
    Table[(3*LucasL[2*n+3,2] + 10*LucasL[2*n+1,2] - 34)/4, {n, 0, 50}] (* G. C. Greubel, Aug 21 2018 *)
  • PARI
    {m=20; v=concat([7, 88, 555], vector(m-3)); for(n=4, m, v[n]=7*v[n-1]-7*v[n-2]+v[n-3]); v}
    

Formula

a(n) = 6*a(n-1) - a(n-2) + 34 for n > 1; a(0) = 7, a(1) = 88.
a(n) = ((31+25*sqrt(2))*(3+2*sqrt(2))^n + (31-25*sqrt(2))*(3-2*sqrt(2))^n - 34)/4.
G.f.: (7+39*x-12*x^2)/((1-x)*(1-6*x+x^2)).
a(n) = (3*A002203(2*n+3) + 10*A002203(2*n+1) - 34)/4. - G. C. Greubel, Aug 21 2018

Extensions

Comment and recursion formula added, cross-references edited by Klaus Brockhaus, Sep 23 2009

A155466 a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) for n > 2; a(0) = 28, a(1) = 207, a(2) = 1248.

Original entry on oeis.org

28, 207, 1248, 7315, 42676, 248775, 1450008, 8451307, 49257868, 287095935, 1673317776, 9752810755, 56843546788, 331308470007, 1931007273288, 11254735169755, 65597403745276, 382329687301935, 2228380720066368
Offset: 0

Views

Author

Klaus Brockhaus, Jan 30 2009

Keywords

Comments

lim_{n -> infinity} a(n+1)/a(n) = 3+2*sqrt(2).

Crossrefs

Third trisection of A118120. Cf. A001652.
Cf. A155464, A155465, A156035 (decimal expansion of 3+2*sqrt(2)).

Programs

  • Magma
    I:=[28, 207, 1248]; [n le 3 select I[n] else 7*Self(n-1) - 7*Self(n-2) + Self(n-3): n in [1..50]]; // G. C. Greubel, Aug 21 2018
  • Mathematica
    Table[(10*LucasL[2*n+3,2] + 3*LucasL[2*n+1, 2] -34)/4, {n, 0, 50}] (* or *) LinearRecurrence[{7,-7,1}, {28, 207, 1248}, 50] (* G. C. Greubel, Aug 21 2018 *)
  • PARI
    {m=19; v=concat([28, 207, 1248], vector(m-3)); for(n=4, m, v[n]=7*v[n-1]-7*v[n-2]+v[n-3]); v}
    

Formula

a(n) = 6*a(n-1) - a(n-2) + 34 for n > 1; a(0) = 28, a(1) = 207.
a(n) = ((73+53*sqrt(2))*(3+2*sqrt(2))^n + (73-53*sqrt(2))*(3-2*sqrt(2))^n - 34)/4.
G.f.: (28+11*x-5*x^2)/((1-x)*(1-6*x+x^2)).
a(n) = (10*A002203(2*n+3) + 3*A002203(2*n+1) - 34)/4. - G. C. Greubel, Aug 21 2018

Extensions

Comment and recursion formula added, cross-references edited by Klaus Brockhaus, Sep 23 2009

A156159 Squares of the form k^2+(k+17)^2 with integer k.

Original entry on oeis.org

169, 289, 625, 2809, 7225, 18769, 93025, 243049, 635209, 3157729, 8254129, 21576025, 107267449, 280395025, 732947329, 3643933225, 9525174409, 24898630849, 123786459889, 323575532569, 845820499225, 4205095700689
Offset: 1

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Comments

Square roots of k^2+(k+17)^2 are in A155923, values k (except for -5) are in A118120.

Examples

			625 = 25^2 is of the form k^2+(k+17)^2 with k = 7: 7^2+24^2 = 625. Hence 625 is in the sequence.
		

Crossrefs

Equals A155923^2. Cf. A156160 (first trisection), A156161 (second trisection), A156162 (third trisection).
Cf. A118120, A156035 (decimal expansion of 3+2*sqrt(2)), A156164 (decimal expansion of 17+12*sqrt(2)), A156163 (decimal expansion of (19+6*sqrt(2))/17), A157649 (decimal expansion of (387+182*sqrt(2))/17^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,34,-34,0,-1,1},{169,289,625,2809,7225,18769,93025},30] (* Harvey P. Dale, Apr 22 2022 *)
  • PARI
    {forstep(n=-5, 1600000, [1, 3], if(issquare(a=2*n*(n+17)+289), print1(a, ",")))}

Formula

a(n) = 34*a(n-3)-a(n-6)-2312 for n > 6; a(1)=169, a(2)=289, a(3)=625, a(4)=2809, a(5)=7225, a(6)=18769.
G.f.: x*(169+120*x+336*x^2-3562*x^3+336*x^4+120*x^5+169*x^6)/((1-x)*(1-34*x^3+x^6)).
Limit_{n -> oo} a(n)/a(n-3) = (17+12*sqrt(2)).
Limit_{n -> oo} a(n)/a(n-1) = ((19+6*sqrt(2))/17)^2 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = ((387+182*sqrt(2))/17^2)^2 for n mod 3 = 1.

Extensions

G.f. corrected, fourth comment and cross-references edited by Klaus Brockhaus, Sep 23 2009

A157649 Decimal expansion of (387 + 182*sqrt(2))/17^2.

Original entry on oeis.org

2, 2, 2, 9, 7, 1, 2, 3, 4, 7, 2, 3, 8, 4, 1, 9, 7, 1, 9, 3, 1, 4, 5, 5, 8, 2, 9, 6, 9, 0, 7, 1, 4, 5, 5, 0, 2, 7, 6, 7, 0, 5, 9, 7, 9, 6, 9, 5, 0, 1, 8, 8, 7, 5, 1, 9, 6, 5, 9, 3, 6, 7, 2, 0, 8, 1, 0, 7, 7, 2, 7, 0, 2, 6, 9, 9, 3, 2, 0, 0, 0, 3, 7, 0, 5, 0, 8, 8, 3, 4, 3, 4, 1, 7, 4, 0, 7, 4, 9, 5, 6, 3, 2, 4, 3
Offset: 1

Views

Author

Klaus Brockhaus, Mar 11 2009

Keywords

Comments

Lim_{n -> infinity} b(n)/b(n-1) = (387 + 182*sqrt(2))/17^2 for n mod 3 = 1, b = A155923.

Examples

			(387 + 182*sqrt(2))/17^2 = 2.22971234723841971931...
		

Crossrefs

Cf. A118120, A155923, A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A156163 (decimal expansion of (19+6*sqrt(2))/17).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (387 + 182*Sqrt(2))/17^2; // G. C. Greubel, Aug 17 2018
  • Mathematica
    RealDigits[(387 + 182*Sqrt[2])/17^2, 10, 100][[1]] (* G. C. Greubel, Aug 17 2018 *)
  • PARI
    (387 + 182*sqrt(2))/17^2 \\ G. C. Greubel, Aug 17 2018
    

Formula

Equals (26 + 7*sqrt(2))/(26 - 7*sqrt(2)) = (3 + 2*sqrt(2))/((19 + 6*sqrt(2))/17)^2 = (3 + 2*sqrt(2))*(6 - sqrt(2))^2/(6 + sqrt(2))^2.

A129010 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+833)^2 = y^2.

Original entry on oeis.org

0, 124, 168, 187, 343, 399, 595, 624, 915, 952, 1260, 1372, 1768, 1827, 1975, 2499, 3135, 3367, 3468, 4312, 4620, 5712, 5875, 7524, 7735, 9499, 10143, 12427, 12768, 13624, 16660, 20352, 21700, 22287, 27195, 28987, 35343, 36292, 45895, 47124
Offset: 1

Views

Author

Mohamed Bouhamida, May 27 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+833, y); 833=7^2*17.
Corresponding values y of solutions (x, y) are in A156835.
lim_{n -> infinity} a(n)/a(n-15) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^2*((19+6*sqrt(2))/17)/(3+2*sqrt(2)) for n mod 15 = {1, 2, 5, 7, 11, 13}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))/(((9+4*sqrt(2))/7)*((19+6*sqrt(2))/17)^2) for n mod 15 = {0, 3, 6, 12}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))*((19+6*sqrt(2))/17)/((9+4*sqrt(2))/7)^3 for n mod 15 = {4, 8, 10, 14}.
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^4/((3+2*sqrt(2))*((19+6*sqrt(2))/17)^2) for n mod 15 = 9.

Examples

			124^2+(124+833)^2 = 15376+915849 = 931225 = 965^2.
		

Crossrefs

Cf. A156835, A076296, A118120, A118554, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7), A156163 (decimal expansion of (19+6*sqrt(2))/17).

Programs

  • PARI
    {forstep(n=0, 50000, [3, 1], if(issquare(2*n^2+1666*n+693889), print1(n, ",")))}

Formula

a(n) = 6*a(n-15)-a(n-30)+1666 for n > 30; a(1) = 0, a(2) = 124, a(3) = 168, a(4) = 187, a(5) = 343, a(6) = 399, a(7) = 595, a(8) = 624, a(9) = 915, a(10) = 952, a(11) = 1260, a(12) = 1372, a(13) = 1768, a(14) = 1827, a(15) = 1975, a(16) = 2499, a(17) = 3135, a(18) = 3367, a(19) = 3468, a(20) = 4312, a(21) = 4620, a(22) = 5712, a(23) = 5875, a(24) = 7524, a(25) = 7735, a(26) = 9499, a(27) = 10143, a(28) = 12427, a(29) = 12768, a(30) = 13624.
G.f.: x*(124+44*x+19*x^2+156*x^3+56*x^4+196*x^5+29*x^6+291*x^7+37*x^8+308*x^9+112*x^10+396*x^11+59*x^12+148*x^13+524*x^14-108*x^15-32*x^16-13*x^17-92*x^18-28*x^19-84*x^20-11*x^21-97*x^22-11*x^23-84*x^24-28*x^25-92*x^26-13*x^27-32*x^28-108*x^29)/((1-x)*(1-6*x^15+x^30)).

Extensions

Edited by Klaus Brockhaus, Feb 16 2009

A201916 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+2737)^2 = y^2.

Original entry on oeis.org

0, 75, 203, 323, 552, 708, 1020, 1127, 1311, 1428, 1608, 1820, 1955, 2336, 2675, 3128, 3311, 3627, 3927, 4140, 4508, 4743, 5535, 6003, 6800, 7280, 7848, 8211, 8588, 9240, 9860, 11063, 11895, 13583, 14168, 15180, 15827, 16827, 18011, 18768, 20915, 22836
Offset: 1

Views

Author

T. D. Noe, Feb 09 2012

Keywords

Comments

Note that 2737 = 7 * 17 * 23, the product of the first three distinct primes in A058529 (and A001132) and hence the smallest such number. This sequence satisfies a linear difference equation of order 55 whose 55 initial terms can be found by running the Mathematica program.
There are many sequences like this one. What determines the order of the linear difference equation? All primes p have order 7. For those p, it appears that p^2 has order 11, p^3 order 15, and p^i order 3+4*i. It appears that for semiprimes p*q (with p > q), the order is 19. What is the next term of the sequence beginning 3, 7, 19, 55, 163? This could be sequence A052919, which is 1 + 2*3^f, where f is the number of primes.
The crossref list is thought to be complete up to Feb 14 2012.

Crossrefs

Cf. A001652 (1), A076296 (7), A118120 (17), A118337 (23), A118674 (31).
Cf. A129288 (41), A118675 (47), A118554 (49), A118673 (71), A129289 (73).
Cf. A118676 (79), A129298 (89), A129836 (97), A157119 (103), A161478 (113).
Cf. A129837 (119), A129992 (127), A129544 (137), A161482 (151).
Cf. A206426 (161), A130608 (167), A161486 (191), A185394 (193).
Cf. A129993 (199), A198294 (217), A130609 (223), A129625 (233).
Cf. A204765 (239), A129991 (241), A207058 (263), A129626 (281).
Cf. A205644 (287), A207059 (289), A129640 (313), A205672 (329).
Cf. A129999 (337), A118611 (343), A130610 (359), A207060 (401).
Cf. A129641 (409), A207061 (433), A130645 (439), A130004 (449).
Cf. A129642 (457), A129725 (521), A101152 (569), A130005 (577).
Cf. A207075 (479), A207076 (487), A207077 (497), A207078 (511).
Cf. A111258 (601), A115135 (617), A130013 (647), A130646 (727).
Cf. A122694 (761), A123654 (809), A129010 (833), A130647 (839).
Cf. A129857 (857), A130014 (881), A129974 (937), A129975 (953).
Cf. A130017 (967), A118630 (2401), A118576 (16807).

Programs

  • Mathematica
    d = 2737; terms = 100; t = Select[Range[0, 55000], IntegerQ[Sqrt[#^2 + (#+d)^2]] &]; Do[AppendTo[t, t[[-1]] + 6*t[[-27]] - 6*t[[-28]] - t[[-54]] + t[[-55]]], {terms-55}]; t

Formula

a(n) = a(n-1) + 6*a(n-27) - 6*a(n-28) - a(n-54) + a(n-55), where the 55 initial terms can be computed using the Mathematica program.
G.f.: x^2*(73*x^53 +116*x^52 +100*x^51 +171*x^50 +104*x^49 +184*x^48 +57*x^47 +92*x^46 +55*x^45 +80*x^44 +88*x^43 +53*x^42 +139*x^41 +113*x^40 +139*x^39 +53*x^38 +88*x^37 +80*x^36 +55*x^35 +92*x^34 +57*x^33 +184*x^32 +104*x^31 +171*x^30 +100*x^29 +116*x^28 +73*x^27 -363*x^26 -568*x^25 -480*x^24 -797*x^23 -468*x^22 -792*x^21 -235*x^20 -368*x^19 -213*x^18 -300*x^17 -316*x^16 -183*x^15 -453*x^14 -339*x^13 -381*x^12 -135*x^11 -212*x^10 -180*x^9 -117*x^8 -184*x^7 -107*x^6 -312*x^5 -156*x^4 -229*x^3 -120*x^2 -128*x -75) / ((x -1)*(x^54 -6*x^27 +1)). - Colin Barker, May 18 2015
Showing 1-9 of 9 results.