cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A156035 Decimal expansion of 3 + 2*sqrt(2).

Original entry on oeis.org

5, 8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7, 7, 0, 0, 7, 7, 5, 0, 6, 8, 6, 5, 5, 2, 8, 3, 1, 4, 5, 4, 7, 0, 0, 2
Offset: 1

Views

Author

Klaus Brockhaus, Feb 02 2009

Keywords

Comments

Limit_{n -> oo} b(n+1)/b(n) = 3+2*sqrt(2) for b = A155464, A155465, A155466.
Limit_{n -> oo} b(n)/b(n-1) = 3+2*sqrt(2) for b = A001652, A001653, A002315, A156156, A156157, A156158. - Klaus Brockhaus, Sep 23 2009
From Richard R. Forberg, Aug 14 2013: (Start)
Ratios b(n+1)/b(n) for all sequences of the form b(n) = 6*b(n-1) - b(n-2), for any initial values of b(0) and b(1), converge to this ratio.
Ratios b(n+1)/b(n) for all sequences of the form b(n) = 5*b(n-1) + 5*b(n-2) + b(n-3), for all b(0), b(1) and b(2) also converge to 3 + 2*sqrt(2). For example see A084158 (Pell Triangles).
Ratios of alternating values, b(n+2)/b(n), for all sequences of the form b(n) = 2*b(n-1) + b(n-2), also converge to 3 + 2*sqrt(2). These include A000129 (Pell Numbers). Also see A014176. (End)
Let ABCD be a square inscribed in a circle. When P is the midpoint of the arc AB, then the ratio (PC*PD)/(PA*PB) is equal to 3+2*sqrt(2). See the Mathematical Reflections link. - Michel Marcus, Jan 10 2017
Limit of ratios of successive terms of A001652 when n-> infinity. - Harvey P. Dale, Jun 16 2017; improved by Bernard Schott, Feb 28 2022
A quadratic integer with minimal polynomial x^2 - 6x + 1. - Charles R Greathouse IV, Jul 11 2020
Ratio between radii of the large circumscribed circle R and the small internal circle r drawn on the Sangaku tablet at Isaniwa Jinjya shrine in Ehime Prefecture (pictures in links). - Bernard Schott, Feb 25 2022

Examples

			3 + 2*sqrt(2) = 5.828427124746190097603377448...
		

References

  • Diogo Queiros-Condé and Michel Feidt, Fractal and Trans-scale Nature of Entropy, Iste Press and Elsevier, 2018, page 45.

Crossrefs

Cf. A002193 (sqrt(2)), A090488, A010466, A014176.
Cf. A104178 (decimal expansion of log_10(3+2*sqrt(2))).
Cf. A242412 (sangaku).

Programs

Formula

Equals 1 + A090488 = 3 + A010466. - R. J. Mathar, Feb 19 2009
Equals exp(arccosh(3)), since arccosh(x) = log(x+sqrt(x^2-1)). - Stanislav Sykora, Nov 01 2013
Equals (1+sqrt(2))^2, that is, A014176^2. - Michel Marcus, May 08 2016
The periodic continued fraction is [5; [1, 4]]. - Stefano Spezia, Mar 17 2024

A118120 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+17)^2 = y^2.

Original entry on oeis.org

0, 7, 28, 51, 88, 207, 340, 555, 1248, 2023, 3276, 7315, 11832, 19135, 42676, 69003, 111568, 248775, 402220, 650307, 1450008, 2344351, 3790308, 8451307, 13663920, 22091575, 49257868, 79639203, 128759176, 287095935, 464171332, 750463515, 1673317776
Offset: 0

Views

Author

Mohamed Bouhamida, May 12 2006

Keywords

Comments

Also values x of Pythagorean triples (x, x+17, y).
Corresponding values y of solutions (x, y) are in A155923.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a prime number in A066436, m >= 2 the associated value in A066049, the x values are given by the sequence defined by a(n) = 6*a(n-3)-a(n-6)+2p with a(0)=0, a(1)=2m+1, a(2)=6m^2-10m+4, a(3)=3p, a(4)=6m^2+10m+4, a(5)=40m^2-58m+21 (cf. A118673).
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(0)=p, b(1)=2*m^2+2m+1, b(2)=10m^2-14m+5, b(3)=5p, b(4)=10m^2+14m+5, b(5)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009

Crossrefs

Cf. A155923, A118673, A066436 (primes of the form 2*n^2-1), A066049 (2*n^2-1 is prime), A118554, A118611, A118630.
Cf. A155464 (first trisection), A155465 (second trisection), A155466 (third trisection).

Programs

  • Magma
    [ n: n in [0..25000000] | IsSquare(2*n*(n+17)+289) ];
    
  • Mathematica
    Select[Range[0,100000],IntegerQ[Sqrt[#^2+(#+17)^2]]&] (* or *) LinearRecurrence[{1,0,6,-6,0,-1,1},{0,7,28,51,88,207,340},50] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
  • PARI
    m=32; v=concat([0, 7, 28, 51, 88, 207], vector(m-6)); for(n=7, m, v[n]=6*v[n-3]-v[n-6]+34); v

Formula

a(n) = 6*a(n-3) -a(n-6) +34 for n > 5; a(0)=0, a(1)=7, a(2)=28, a(3)=51, a(4)=88, a(5)=207.
G. f.: x*(7 +21*x +23*x^2 -5*x^3 -7*x^4 -5*x^5)/((1-x)*(1-6*x^3+x^6)).

Extensions

Edited and 248755 changed to 248775 by Klaus Brockhaus, Feb 01 2009

A155464 a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) for n > 2; a(0) = 0, a(1) = 51, a(2) = 340.

Original entry on oeis.org

0, 51, 340, 2023, 11832, 69003, 402220, 2344351, 13663920, 79639203, 464171332, 2705388823, 15768161640, 91903581051, 535653324700, 3122016367183, 18196444878432, 106056652903443, 618143472542260, 3602804182350151
Offset: 0

Views

Author

Klaus Brockhaus, Jan 30 2009

Keywords

Comments

lim_{n -> infinity} a(n+1)/a(n) = 3+2*sqrt(2).

Crossrefs

First trisection of A118120. Equals 17*A001652.
Cf. A155465, A155466, A156035 (decimal expansion of 3+2*sqrt(2)).

Programs

  • Magma
    I:=[0,51,340]; [n le 3 select I[n] else 7*Self(n-1) - 7*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Aug 21 2018
  • Mathematica
    LinearRecurrence[{7,-7,1},{0,51,340},30] (* Harvey P. Dale, Jun 10 2013 *)
    Table[17*(LucasL[2*n+1,2] - 2)/4, {n, 0, 50}] (* G. C. Greubel, Aug 21 2018 *)
  • PARI
    {m=20; v=concat([0, 51, 340], vector(m-3)); for(n=4, m, v[n]=7*v[n-1]-7*v[n-2]+v[n-3]); v}
    

Formula

a(n) = 6*a(n-1) - a(n-2) + 34 for n > 1; a(0) = 0, a(1) = 51.
a(n) = ((1+sqrt(2))*(3+2*sqrt(2))^n + (1-sqrt(2))*(3-2*sqrt(2))^n -2)*(17/4).
G.f.: 17*x*(3-x)/((1-x)*(1-6*x+x^2)).
a(n) = 17*(A002203(2*n+1) - 2)/4. - G. C. Greubel, Aug 21 2018

Extensions

Comment and recursion formula added, cross-references edited by Klaus Brockhaus, Sep 23 2009

A155466 a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) for n > 2; a(0) = 28, a(1) = 207, a(2) = 1248.

Original entry on oeis.org

28, 207, 1248, 7315, 42676, 248775, 1450008, 8451307, 49257868, 287095935, 1673317776, 9752810755, 56843546788, 331308470007, 1931007273288, 11254735169755, 65597403745276, 382329687301935, 2228380720066368
Offset: 0

Views

Author

Klaus Brockhaus, Jan 30 2009

Keywords

Comments

lim_{n -> infinity} a(n+1)/a(n) = 3+2*sqrt(2).

Crossrefs

Third trisection of A118120. Cf. A001652.
Cf. A155464, A155465, A156035 (decimal expansion of 3+2*sqrt(2)).

Programs

  • Magma
    I:=[28, 207, 1248]; [n le 3 select I[n] else 7*Self(n-1) - 7*Self(n-2) + Self(n-3): n in [1..50]]; // G. C. Greubel, Aug 21 2018
  • Mathematica
    Table[(10*LucasL[2*n+3,2] + 3*LucasL[2*n+1, 2] -34)/4, {n, 0, 50}] (* or *) LinearRecurrence[{7,-7,1}, {28, 207, 1248}, 50] (* G. C. Greubel, Aug 21 2018 *)
  • PARI
    {m=19; v=concat([28, 207, 1248], vector(m-3)); for(n=4, m, v[n]=7*v[n-1]-7*v[n-2]+v[n-3]); v}
    

Formula

a(n) = 6*a(n-1) - a(n-2) + 34 for n > 1; a(0) = 28, a(1) = 207.
a(n) = ((73+53*sqrt(2))*(3+2*sqrt(2))^n + (73-53*sqrt(2))*(3-2*sqrt(2))^n - 34)/4.
G.f.: (28+11*x-5*x^2)/((1-x)*(1-6*x+x^2)).
a(n) = (10*A002203(2*n+3) + 3*A002203(2*n+1) - 34)/4. - G. C. Greubel, Aug 21 2018

Extensions

Comment and recursion formula added, cross-references edited by Klaus Brockhaus, Sep 23 2009
Showing 1-4 of 4 results.