cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A118120 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+17)^2 = y^2.

Original entry on oeis.org

0, 7, 28, 51, 88, 207, 340, 555, 1248, 2023, 3276, 7315, 11832, 19135, 42676, 69003, 111568, 248775, 402220, 650307, 1450008, 2344351, 3790308, 8451307, 13663920, 22091575, 49257868, 79639203, 128759176, 287095935, 464171332, 750463515, 1673317776
Offset: 0

Views

Author

Mohamed Bouhamida, May 12 2006

Keywords

Comments

Also values x of Pythagorean triples (x, x+17, y).
Corresponding values y of solutions (x, y) are in A155923.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a prime number in A066436, m >= 2 the associated value in A066049, the x values are given by the sequence defined by a(n) = 6*a(n-3)-a(n-6)+2p with a(0)=0, a(1)=2m+1, a(2)=6m^2-10m+4, a(3)=3p, a(4)=6m^2+10m+4, a(5)=40m^2-58m+21 (cf. A118673).
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(0)=p, b(1)=2*m^2+2m+1, b(2)=10m^2-14m+5, b(3)=5p, b(4)=10m^2+14m+5, b(5)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009

Crossrefs

Cf. A155923, A118673, A066436 (primes of the form 2*n^2-1), A066049 (2*n^2-1 is prime), A118554, A118611, A118630.
Cf. A155464 (first trisection), A155465 (second trisection), A155466 (third trisection).

Programs

  • Magma
    [ n: n in [0..25000000] | IsSquare(2*n*(n+17)+289) ];
    
  • Mathematica
    Select[Range[0,100000],IntegerQ[Sqrt[#^2+(#+17)^2]]&] (* or *) LinearRecurrence[{1,0,6,-6,0,-1,1},{0,7,28,51,88,207,340},50] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
  • PARI
    m=32; v=concat([0, 7, 28, 51, 88, 207], vector(m-6)); for(n=7, m, v[n]=6*v[n-3]-v[n-6]+34); v

Formula

a(n) = 6*a(n-3) -a(n-6) +34 for n > 5; a(0)=0, a(1)=7, a(2)=28, a(3)=51, a(4)=88, a(5)=207.
G. f.: x*(7 +21*x +23*x^2 -5*x^3 -7*x^4 -5*x^5)/((1-x)*(1-6*x^3+x^6)).

Extensions

Edited and 248755 changed to 248775 by Klaus Brockhaus, Feb 01 2009

A156163 Decimal expansion of (19+6*sqrt(2))/17.

Original entry on oeis.org

1, 6, 1, 6, 7, 8, 1, 2, 5, 7, 3, 0, 8, 1, 5, 1, 1, 9, 3, 6, 9, 4, 7, 1, 3, 6, 6, 7, 3, 6, 8, 1, 2, 8, 7, 3, 3, 6, 1, 2, 8, 2, 5, 3, 6, 7, 7, 8, 0, 0, 9, 9, 3, 1, 9, 9, 4, 4, 7, 1, 0, 4, 9, 5, 7, 6, 1, 4, 3, 4, 9, 9, 2, 3, 9, 8, 3, 9, 0, 7, 1, 9, 5, 9, 4, 2, 5, 4, 4, 2, 3, 8, 8, 0, 3, 4, 4, 0, 8, 4, 4, 9, 4, 7, 1
Offset: 1

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (19+6*sqrt(2))/17 for n mod 3 = {0, 2}, b = A155923.
lim_{n -> infinity} b(n)/b(n-1) = ((19+6*sqrt(2))/17)^2 for n mod 3 = {0, 2}, b = A156159.

Examples

			(19+6*sqrt(2))/17 = 1.61678125730815119369...
		

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A156164 (decimal expansion of 17+12*sqrt(2)).

Programs

A156156 a(n) = 6*a(n-1)-a(n-2) for n > 2; a(1) = 13, a(2) = 53.

Original entry on oeis.org

13, 53, 305, 1777, 10357, 60365, 351833, 2050633, 11951965, 69661157, 406014977, 2366428705, 13792557253, 80388914813, 468540931625, 2730856674937, 15916599117997, 92768738033045, 540695829080273, 3151406236448593
Offset: 1

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Comments

lim_{n -> infinity} a(n)/a(n-1) = 3+2*sqrt(2).

Crossrefs

First trisection of A155923.
Cf. A156035 (decimal expansion of 3+2*sqrt(2)), A156157, A156158.

Programs

  • PARI
    {m=20; v=concat([13, 53], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-v[n-2]); v}

Formula

a(n) = ((50+31*sqrt(2))*(3-2*sqrt(2))^n+(50-31*sqrt(2))*(3+2*sqrt(2))^n)/4.
G.f.: x*(13-25*x)/(1-6*x+x^2).

Extensions

Replaced abbreviation by sqrt(2) Klaus Brockhaus, Feb 12 2009
G.f. corrected by Klaus Brockhaus, Sep 23 2009

A156157 a(n) = 6*a(n-1)-a(n-2) for n > 2; a(1) = 17, a(2) = 85.

Original entry on oeis.org

17, 85, 493, 2873, 16745, 97597, 568837, 3315425, 19323713, 112626853, 656437405, 3825997577, 22299548057, 129971290765, 757528196533, 4415197888433, 25733659134065, 149986756915957, 874186882361677, 5095134537254105
Offset: 1

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Comments

lim_{n -> infinity} a(n)/a(n-1) = 3+2*sqrt(2).

Crossrefs

Second trisection of A155923. Equals 17*A001653.
Cf. A156035 (decimal expansion of 3+2*sqrt(2)), A156156, A156158.

Programs

  • PARI
    {m=20; v=concat([17, 85], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-v[n-2]); v}

Formula

a(n) = ((2+sqrt(2))*(3-2*sqrt(2))^n+(2-sqrt(2))*(3+2*sqrt(2))^n)*17/4.
G.f.: 17*x*(1-x)/(1-6*x+x^2).

Extensions

Replaced abbreviation by sqrt(2) Klaus Brockhaus, Feb 12 2009
G.f. corrected by Klaus Brockhaus, Sep 23 2009

A156158 a(n) = 6*a(n-1) - a(n-2) for n > 2; a(1) = 25, a(2) = 137.

Original entry on oeis.org

25, 137, 797, 4645, 27073, 157793, 919685, 5360317, 31242217, 182092985, 1061315693, 6185801173, 36053491345, 210135146897, 1224757390037, 7138409193325, 41605697769913, 242495777426153, 1413368966787005
Offset: 1

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Crossrefs

Third trisection of A155923.
Cf. A156035 (decimal expansion of 3+2*sqrt(2)), A156156, A156157.

Programs

  • Mathematica
    LinearRecurrence[{6,-1},{25,137},30] (* Harvey P. Dale, Jan 02 2019 *)
  • PARI
    {m=19; v=concat([25,137], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-v[n-2]); v}

Formula

a(n) = ((26+7*sqrt(2))*(3-2*sqrt(2))^n+(26-7*sqrt(2))*(3+2*sqrt(2))^n)/4.
G.f.: x*(25-13*x)/(1-6*x+x^2).
Limit_{n -> oo} a(n)/a(n-1) = 3+2*sqrt(2).

A156159 Squares of the form k^2+(k+17)^2 with integer k.

Original entry on oeis.org

169, 289, 625, 2809, 7225, 18769, 93025, 243049, 635209, 3157729, 8254129, 21576025, 107267449, 280395025, 732947329, 3643933225, 9525174409, 24898630849, 123786459889, 323575532569, 845820499225, 4205095700689
Offset: 1

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Comments

Square roots of k^2+(k+17)^2 are in A155923, values k (except for -5) are in A118120.

Examples

			625 = 25^2 is of the form k^2+(k+17)^2 with k = 7: 7^2+24^2 = 625. Hence 625 is in the sequence.
		

Crossrefs

Equals A155923^2. Cf. A156160 (first trisection), A156161 (second trisection), A156162 (third trisection).
Cf. A118120, A156035 (decimal expansion of 3+2*sqrt(2)), A156164 (decimal expansion of 17+12*sqrt(2)), A156163 (decimal expansion of (19+6*sqrt(2))/17), A157649 (decimal expansion of (387+182*sqrt(2))/17^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,34,-34,0,-1,1},{169,289,625,2809,7225,18769,93025},30] (* Harvey P. Dale, Apr 22 2022 *)
  • PARI
    {forstep(n=-5, 1600000, [1, 3], if(issquare(a=2*n*(n+17)+289), print1(a, ",")))}

Formula

a(n) = 34*a(n-3)-a(n-6)-2312 for n > 6; a(1)=169, a(2)=289, a(3)=625, a(4)=2809, a(5)=7225, a(6)=18769.
G.f.: x*(169+120*x+336*x^2-3562*x^3+336*x^4+120*x^5+169*x^6)/((1-x)*(1-34*x^3+x^6)).
Limit_{n -> oo} a(n)/a(n-3) = (17+12*sqrt(2)).
Limit_{n -> oo} a(n)/a(n-1) = ((19+6*sqrt(2))/17)^2 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = ((387+182*sqrt(2))/17^2)^2 for n mod 3 = 1.

Extensions

G.f. corrected, fourth comment and cross-references edited by Klaus Brockhaus, Sep 23 2009

A157649 Decimal expansion of (387 + 182*sqrt(2))/17^2.

Original entry on oeis.org

2, 2, 2, 9, 7, 1, 2, 3, 4, 7, 2, 3, 8, 4, 1, 9, 7, 1, 9, 3, 1, 4, 5, 5, 8, 2, 9, 6, 9, 0, 7, 1, 4, 5, 5, 0, 2, 7, 6, 7, 0, 5, 9, 7, 9, 6, 9, 5, 0, 1, 8, 8, 7, 5, 1, 9, 6, 5, 9, 3, 6, 7, 2, 0, 8, 1, 0, 7, 7, 2, 7, 0, 2, 6, 9, 9, 3, 2, 0, 0, 0, 3, 7, 0, 5, 0, 8, 8, 3, 4, 3, 4, 1, 7, 4, 0, 7, 4, 9, 5, 6, 3, 2, 4, 3
Offset: 1

Views

Author

Klaus Brockhaus, Mar 11 2009

Keywords

Comments

Lim_{n -> infinity} b(n)/b(n-1) = (387 + 182*sqrt(2))/17^2 for n mod 3 = 1, b = A155923.

Examples

			(387 + 182*sqrt(2))/17^2 = 2.22971234723841971931...
		

Crossrefs

Cf. A118120, A155923, A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A156163 (decimal expansion of (19+6*sqrt(2))/17).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (387 + 182*Sqrt(2))/17^2; // G. C. Greubel, Aug 17 2018
  • Mathematica
    RealDigits[(387 + 182*Sqrt[2])/17^2, 10, 100][[1]] (* G. C. Greubel, Aug 17 2018 *)
  • PARI
    (387 + 182*sqrt(2))/17^2 \\ G. C. Greubel, Aug 17 2018
    

Formula

Equals (26 + 7*sqrt(2))/(26 - 7*sqrt(2)) = (3 + 2*sqrt(2))/((19 + 6*sqrt(2))/17)^2 = (3 + 2*sqrt(2))*(6 - sqrt(2))^2/(6 + sqrt(2))^2.
Showing 1-7 of 7 results.