cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A156035 Decimal expansion of 3 + 2*sqrt(2).

Original entry on oeis.org

5, 8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7, 7, 0, 0, 7, 7, 5, 0, 6, 8, 6, 5, 5, 2, 8, 3, 1, 4, 5, 4, 7, 0, 0, 2
Offset: 1

Views

Author

Klaus Brockhaus, Feb 02 2009

Keywords

Comments

Limit_{n -> oo} b(n+1)/b(n) = 3+2*sqrt(2) for b = A155464, A155465, A155466.
Limit_{n -> oo} b(n)/b(n-1) = 3+2*sqrt(2) for b = A001652, A001653, A002315, A156156, A156157, A156158. - Klaus Brockhaus, Sep 23 2009
From Richard R. Forberg, Aug 14 2013: (Start)
Ratios b(n+1)/b(n) for all sequences of the form b(n) = 6*b(n-1) - b(n-2), for any initial values of b(0) and b(1), converge to this ratio.
Ratios b(n+1)/b(n) for all sequences of the form b(n) = 5*b(n-1) + 5*b(n-2) + b(n-3), for all b(0), b(1) and b(2) also converge to 3 + 2*sqrt(2). For example see A084158 (Pell Triangles).
Ratios of alternating values, b(n+2)/b(n), for all sequences of the form b(n) = 2*b(n-1) + b(n-2), also converge to 3 + 2*sqrt(2). These include A000129 (Pell Numbers). Also see A014176. (End)
Let ABCD be a square inscribed in a circle. When P is the midpoint of the arc AB, then the ratio (PC*PD)/(PA*PB) is equal to 3+2*sqrt(2). See the Mathematical Reflections link. - Michel Marcus, Jan 10 2017
Limit of ratios of successive terms of A001652 when n-> infinity. - Harvey P. Dale, Jun 16 2017; improved by Bernard Schott, Feb 28 2022
A quadratic integer with minimal polynomial x^2 - 6x + 1. - Charles R Greathouse IV, Jul 11 2020
Ratio between radii of the large circumscribed circle R and the small internal circle r drawn on the Sangaku tablet at Isaniwa Jinjya shrine in Ehime Prefecture (pictures in links). - Bernard Schott, Feb 25 2022

Examples

			3 + 2*sqrt(2) = 5.828427124746190097603377448...
		

References

  • Diogo Queiros-Condé and Michel Feidt, Fractal and Trans-scale Nature of Entropy, Iste Press and Elsevier, 2018, page 45.

Crossrefs

Cf. A002193 (sqrt(2)), A090488, A010466, A014176.
Cf. A104178 (decimal expansion of log_10(3+2*sqrt(2))).
Cf. A242412 (sangaku).

Programs

Formula

Equals 1 + A090488 = 3 + A010466. - R. J. Mathar, Feb 19 2009
Equals exp(arccosh(3)), since arccosh(x) = log(x+sqrt(x^2-1)). - Stanislav Sykora, Nov 01 2013
Equals (1+sqrt(2))^2, that is, A014176^2. - Michel Marcus, May 08 2016
The periodic continued fraction is [5; [1, 4]]. - Stefano Spezia, Mar 17 2024

A155923 Positive numbers y such that y^2 is of the form x^2+(x+17)^2 with integer x.

Original entry on oeis.org

13, 17, 25, 53, 85, 137, 305, 493, 797, 1777, 2873, 4645, 10357, 16745, 27073, 60365, 97597, 157793, 351833, 568837, 919685, 2050633, 3315425, 5360317, 11951965, 19323713, 31242217, 69661157, 112626853, 182092985, 406014977, 656437405
Offset: 1

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Comments

(-5,a(1)) and (A118120(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+17)^2 = y^2. (Offset 1 is assumed for A118120.)
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (19+6*sqrt(2))/17 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (387+182*sqrt(2))/17^2 for n mod 3 = 1.
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, the x values are given by the sequence defined by: a(n)=6*a(n-3)-a(n-6)+2p with a(1)=0, a(2)=2m+1, a(3)=6m^2-10m+4, a(4)=3p, a(5)=6m^2+10m+4, a(6)=40m^2-58m+21.Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(1)=p, b(2)=2*m^2+2m+1, b(3)=10m^2-14m+5, b(4)=5p, b(5)=10m^2+14m+5, b(6)=58m^2-82m+29. [From Mohamed Bouhamida, Sep 09 2009]

Examples

			(-5,a(1)) = (-5,13) is a solution: (-5)^2+(-5+17)^2 = 25+144 = 169 = 13^2;
(A118120(1), a(2)) = (0, 17) is a solution: 0^2+(0+17)^2 = 289 = 17^2;
(A118120(2), a(3)) = (7, 25) is a solution: 7^2+(7+17)^2 = 49+576 = 625 = 25^2.
		

Crossrefs

Cf. A118120, A156035 (decimal expansion of 3+2*sqrt(2)), A156163 (decimal expansion of (19+6*sqrt(2))/17), A157649 (decimal expansion of (387+182*sqrt(2))/17^2).
Cf. A156156 (first trisection), A156157 (second trisection), A156158 (third trisection).

Programs

  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1},{13,17,25,53,85,137},50] (* Harvey P. Dale, Feb 11 2015 *)
  • PARI
    {forstep(n=-5, 660000000, [1,3], if(issquare(2*n*(n+17)+289, &k), print1(k, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1) = 13, a(2) = 17, a(3) = 25, a(4) = 53, a(5) = 85, a(6) = 137.
G.f.: x*(1-x)*(13+30*x+55*x^2+30*x^3+13*x^4)/(1-6*x^3+x^6).

Extensions

G.f. corrected, first and fourth comment and examples edited, cross-reference added by Klaus Brockhaus, Sep 22 2009

A156156 a(n) = 6*a(n-1)-a(n-2) for n > 2; a(1) = 13, a(2) = 53.

Original entry on oeis.org

13, 53, 305, 1777, 10357, 60365, 351833, 2050633, 11951965, 69661157, 406014977, 2366428705, 13792557253, 80388914813, 468540931625, 2730856674937, 15916599117997, 92768738033045, 540695829080273, 3151406236448593
Offset: 1

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Comments

lim_{n -> infinity} a(n)/a(n-1) = 3+2*sqrt(2).

Crossrefs

First trisection of A155923.
Cf. A156035 (decimal expansion of 3+2*sqrt(2)), A156157, A156158.

Programs

  • PARI
    {m=20; v=concat([13, 53], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-v[n-2]); v}

Formula

a(n) = ((50+31*sqrt(2))*(3-2*sqrt(2))^n+(50-31*sqrt(2))*(3+2*sqrt(2))^n)/4.
G.f.: x*(13-25*x)/(1-6*x+x^2).

Extensions

Replaced abbreviation by sqrt(2) Klaus Brockhaus, Feb 12 2009
G.f. corrected by Klaus Brockhaus, Sep 23 2009

A156157 a(n) = 6*a(n-1)-a(n-2) for n > 2; a(1) = 17, a(2) = 85.

Original entry on oeis.org

17, 85, 493, 2873, 16745, 97597, 568837, 3315425, 19323713, 112626853, 656437405, 3825997577, 22299548057, 129971290765, 757528196533, 4415197888433, 25733659134065, 149986756915957, 874186882361677, 5095134537254105
Offset: 1

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Comments

lim_{n -> infinity} a(n)/a(n-1) = 3+2*sqrt(2).

Crossrefs

Second trisection of A155923. Equals 17*A001653.
Cf. A156035 (decimal expansion of 3+2*sqrt(2)), A156156, A156158.

Programs

  • PARI
    {m=20; v=concat([17, 85], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-v[n-2]); v}

Formula

a(n) = ((2+sqrt(2))*(3-2*sqrt(2))^n+(2-sqrt(2))*(3+2*sqrt(2))^n)*17/4.
G.f.: 17*x*(1-x)/(1-6*x+x^2).

Extensions

Replaced abbreviation by sqrt(2) Klaus Brockhaus, Feb 12 2009
G.f. corrected by Klaus Brockhaus, Sep 23 2009
Showing 1-4 of 4 results.