A118630 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+2401)^2 = y^2.
0, 539, 924, 1220, 1715, 2744, 3503, 4095, 5096, 7203, 9996, 12075, 13703, 16464, 22295, 26640, 30044, 35819, 48020, 64239, 76328, 85800, 101871, 135828, 161139, 180971, 214620, 285719, 380240, 450695, 505899, 599564, 797475, 944996, 1060584
Offset: 1
Examples
924^2+(924+2401)^2 = 853776+11055625 = 11909401 = 3451^2.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,6,-6,0,0,0,0,0,0,0,-1,1).
Crossrefs
Programs
-
PARI
{forstep(n=0, 1100000, [3 ,1], if(issquare(n^2+(n+2401)^2), print1(n, ",")))}
Formula
a(n) = 6*a(n-9)-a(n-18)+4802 for n > 18; a(1)=0, a(2)=539, a(3)=924, a(4)=1220, a(5)=1715, a(6)=2744, a(7)=3503, a(8)=4095, a(9)=5096, a(10)=7203, a(11)=9996, a(12)=12075, a(13)=13703, a(14)=16464,a (15)=22295, a(16)=26640, a(17)=30044, a(18)=35819.
G.f.: x*(539+385*x+296*x^2+495*x^3+1029*x^4+759*x^5+592*x^6 +1001*x^7+2107*x^8-441*x^9-231*x^10-148*x^11-209*x^12-343*x^13 -209*x^14-148*x^15-231*x^16-441*x^17) / ((1-x)*(1-6*x^9+x^18)).
a(9*k+1) = 2401*A001652(k) for k >= 0.
Extensions
Edited by Klaus Brockhaus, Feb 25 2009
Comments